磷氮共掺石墨烯:氧还原反应的稳定性和催化活性

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jinmin Guo , Weiwei Shao , Hongfeng Yan , Manhong Zhao , Yang-Yi Liu , Qiufeng Fang , Tianle Xia , Jinlong Wang , Xiao-Chun Li
{"title":"磷氮共掺石墨烯:氧还原反应的稳定性和催化活性","authors":"Jinmin Guo ,&nbsp;Weiwei Shao ,&nbsp;Hongfeng Yan ,&nbsp;Manhong Zhao ,&nbsp;Yang-Yi Liu ,&nbsp;Qiufeng Fang ,&nbsp;Tianle Xia ,&nbsp;Jinlong Wang ,&nbsp;Xiao-Chun Li","doi":"10.1016/j.cartre.2024.100379","DOIUrl":null,"url":null,"abstract":"<div><p>This study systematically investigated the stable configurations and oxygen reduction reaction (ORR) catalytic activity of PN co-doped graphene using first-principles methods. We found that PN co-doped graphene substrates are generally highly stable. The adsorption energy of adsorbates is linearly positively correlated with the number of electrons obtained from the substrate. The P atoms serve as catalytic activity sites, the co-doping of N significantly enhances the adsorption energies of intermediate species in the ORR process, facilitating the direct dissociation of O2 and O2H. The solvation effect has a non-negligible impact on the adsorption energy of adsorbates, especially for O2. Due to the excessive adsorption of O, it poisons and inhibits the catalytic activity of P active sites for ORR. However, after O adsorption, the C atoms neighboring the PN impurity atoms in the P-Nn-Gra (n=2,3) substrates exhibit better catalytic activity than that of graphene doped with P/N alone. The P-Nn-defect-Gra (n=2,3,4) substrates are potential catalysts with good HER catalytic activity.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000609/pdfft?md5=517906effb23e217946feaa923edb6f9&pid=1-s2.0-S2667056924000609-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Phosphorus and nitrogen co-doped-graphene: Stability and catalytic activity in oxygen reduction reaction\",\"authors\":\"Jinmin Guo ,&nbsp;Weiwei Shao ,&nbsp;Hongfeng Yan ,&nbsp;Manhong Zhao ,&nbsp;Yang-Yi Liu ,&nbsp;Qiufeng Fang ,&nbsp;Tianle Xia ,&nbsp;Jinlong Wang ,&nbsp;Xiao-Chun Li\",\"doi\":\"10.1016/j.cartre.2024.100379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study systematically investigated the stable configurations and oxygen reduction reaction (ORR) catalytic activity of PN co-doped graphene using first-principles methods. We found that PN co-doped graphene substrates are generally highly stable. The adsorption energy of adsorbates is linearly positively correlated with the number of electrons obtained from the substrate. The P atoms serve as catalytic activity sites, the co-doping of N significantly enhances the adsorption energies of intermediate species in the ORR process, facilitating the direct dissociation of O2 and O2H. The solvation effect has a non-negligible impact on the adsorption energy of adsorbates, especially for O2. Due to the excessive adsorption of O, it poisons and inhibits the catalytic activity of P active sites for ORR. However, after O adsorption, the C atoms neighboring the PN impurity atoms in the P-Nn-Gra (n=2,3) substrates exhibit better catalytic activity than that of graphene doped with P/N alone. The P-Nn-defect-Gra (n=2,3,4) substrates are potential catalysts with good HER catalytic activity.</p></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000609/pdfft?md5=517906effb23e217946feaa923edb6f9&pid=1-s2.0-S2667056924000609-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用第一性原理方法系统地研究了掺杂 PN 的石墨烯的稳定构型和氧还原反应(ORR)催化活性。我们发现,PN 共掺杂石墨烯基底通常具有很高的稳定性。吸附剂的吸附能与从基底获得的电子数呈线性正相关。P 原子作为催化活性位点,N 的共掺杂显著增强了 ORR 过程中中间物种的吸附能,促进了 O2 和 O2H 的直接解离。溶解效应对吸附剂的吸附能有不可忽略的影响,尤其是对 O2。由于 O 的过量吸附,会毒害和抑制 ORR 的 P 活性位点的催化活性。然而,吸附 O 后,P-Nn-Gra(n=2,3)基底中与 PN 杂质原子相邻的 C 原子比单独掺杂 P/N 的石墨烯表现出更好的催化活性。P-Nn-缺陷-Gra(n=2,3,4)基底是具有良好 HER 催化活性的潜在催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phosphorus and nitrogen co-doped-graphene: Stability and catalytic activity in oxygen reduction reaction

This study systematically investigated the stable configurations and oxygen reduction reaction (ORR) catalytic activity of PN co-doped graphene using first-principles methods. We found that PN co-doped graphene substrates are generally highly stable. The adsorption energy of adsorbates is linearly positively correlated with the number of electrons obtained from the substrate. The P atoms serve as catalytic activity sites, the co-doping of N significantly enhances the adsorption energies of intermediate species in the ORR process, facilitating the direct dissociation of O2 and O2H. The solvation effect has a non-negligible impact on the adsorption energy of adsorbates, especially for O2. Due to the excessive adsorption of O, it poisons and inhibits the catalytic activity of P active sites for ORR. However, after O adsorption, the C atoms neighboring the PN impurity atoms in the P-Nn-Gra (n=2,3) substrates exhibit better catalytic activity than that of graphene doped with P/N alone. The P-Nn-defect-Gra (n=2,3,4) substrates are potential catalysts with good HER catalytic activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信