{"title":"独立描述金属切削过程中剪切和犁耕效应的滑移线场模型","authors":"","doi":"10.1016/j.wear.2024.205504","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a new slip-line field model to separately characterize the shearing-included cutting process and the pure-plough cutting process. The shear plane and dead metal zone in relation to the shearing effect are modelled by straight slip-lines, while the deformation area in relation to the ploughing effect is treated to have straight boundaries. The boundaries of the dead metal zone and ploughing area are determined by considering tool-workpiece frictional behaviours. The stresses acting on the boundaries of the ploughing area, dead metal zone and shear plane are separately modelled considering the thermal–mechanical coupling effect. Based on the minimum energy principle, the shear angle is originally modelled by following the dynamic requirement of chip flow to balance the forces acting on dead metal zone, shear plane and rake face. By iteratively solving the coupling effect among the temperature, stress and shear angle, the total cutting forces are acquired by integration operation through straight slip-lines. Experiment results and finite element simulations validate the proposed slip-line field model in predicting the shear angle and cutting forces for both micro and regular milling processes.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A slip-line field model for independently characterizing shearing and ploughing effects in metal cutting processes\",\"authors\":\"\",\"doi\":\"10.1016/j.wear.2024.205504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposes a new slip-line field model to separately characterize the shearing-included cutting process and the pure-plough cutting process. The shear plane and dead metal zone in relation to the shearing effect are modelled by straight slip-lines, while the deformation area in relation to the ploughing effect is treated to have straight boundaries. The boundaries of the dead metal zone and ploughing area are determined by considering tool-workpiece frictional behaviours. The stresses acting on the boundaries of the ploughing area, dead metal zone and shear plane are separately modelled considering the thermal–mechanical coupling effect. Based on the minimum energy principle, the shear angle is originally modelled by following the dynamic requirement of chip flow to balance the forces acting on dead metal zone, shear plane and rake face. By iteratively solving the coupling effect among the temperature, stress and shear angle, the total cutting forces are acquired by integration operation through straight slip-lines. Experiment results and finite element simulations validate the proposed slip-line field model in predicting the shear angle and cutting forces for both micro and regular milling processes.</p></div>\",\"PeriodicalId\":23970,\"journal\":{\"name\":\"Wear\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043164824002692\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824002692","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A slip-line field model for independently characterizing shearing and ploughing effects in metal cutting processes
This study proposes a new slip-line field model to separately characterize the shearing-included cutting process and the pure-plough cutting process. The shear plane and dead metal zone in relation to the shearing effect are modelled by straight slip-lines, while the deformation area in relation to the ploughing effect is treated to have straight boundaries. The boundaries of the dead metal zone and ploughing area are determined by considering tool-workpiece frictional behaviours. The stresses acting on the boundaries of the ploughing area, dead metal zone and shear plane are separately modelled considering the thermal–mechanical coupling effect. Based on the minimum energy principle, the shear angle is originally modelled by following the dynamic requirement of chip flow to balance the forces acting on dead metal zone, shear plane and rake face. By iteratively solving the coupling effect among the temperature, stress and shear angle, the total cutting forces are acquired by integration operation through straight slip-lines. Experiment results and finite element simulations validate the proposed slip-line field model in predicting the shear angle and cutting forces for both micro and regular milling processes.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.