{"title":"成双成对的多样性","authors":"Runar Ile","doi":"10.1016/j.jpaa.2024.107779","DOIUrl":null,"url":null,"abstract":"<div><p>For a pair (algebra, module) with equidimensional and isolated singularity we establish the existence of a versal henselian deformation. Obstruction theory in terms of an André-Quillen cohomology for pairs is a central ingredient in the Artin theory used. In particular we give a long exact sequence relating the algebra cohomology and the module cohomology with the cohomology of the pair and define a Kodaira-Spencer class for pairs.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001762/pdfft?md5=821fe00dcb6b4297ead3668a0cb9c547&pid=1-s2.0-S0022404924001762-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Versality for pairs\",\"authors\":\"Runar Ile\",\"doi\":\"10.1016/j.jpaa.2024.107779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a pair (algebra, module) with equidimensional and isolated singularity we establish the existence of a versal henselian deformation. Obstruction theory in terms of an André-Quillen cohomology for pairs is a central ingredient in the Artin theory used. In particular we give a long exact sequence relating the algebra cohomology and the module cohomology with the cohomology of the pair and define a Kodaira-Spencer class for pairs.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001762/pdfft?md5=821fe00dcb6b4297ead3668a0cb9c547&pid=1-s2.0-S0022404924001762-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For a pair (algebra, module) with equidimensional and isolated singularity we establish the existence of a versal henselian deformation. Obstruction theory in terms of an André-Quillen cohomology for pairs is a central ingredient in the Artin theory used. In particular we give a long exact sequence relating the algebra cohomology and the module cohomology with the cohomology of the pair and define a Kodaira-Spencer class for pairs.