成双成对的多样性

Pub Date : 2024-07-26 DOI:10.1016/j.jpaa.2024.107779
Runar Ile
{"title":"成双成对的多样性","authors":"Runar Ile","doi":"10.1016/j.jpaa.2024.107779","DOIUrl":null,"url":null,"abstract":"<div><p>For a pair (algebra, module) with equidimensional and isolated singularity we establish the existence of a versal henselian deformation. Obstruction theory in terms of an André-Quillen cohomology for pairs is a central ingredient in the Artin theory used. In particular we give a long exact sequence relating the algebra cohomology and the module cohomology with the cohomology of the pair and define a Kodaira-Spencer class for pairs.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001762/pdfft?md5=821fe00dcb6b4297ead3668a0cb9c547&pid=1-s2.0-S0022404924001762-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Versality for pairs\",\"authors\":\"Runar Ile\",\"doi\":\"10.1016/j.jpaa.2024.107779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a pair (algebra, module) with equidimensional and isolated singularity we establish the existence of a versal henselian deformation. Obstruction theory in terms of an André-Quillen cohomology for pairs is a central ingredient in the Artin theory used. In particular we give a long exact sequence relating the algebra cohomology and the module cohomology with the cohomology of the pair and define a Kodaira-Spencer class for pairs.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001762/pdfft?md5=821fe00dcb6b4297ead3668a0cb9c547&pid=1-s2.0-S0022404924001762-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于具有等维且孤立奇点的一对(代数,模块),我们建立了一个 versal henselian 变形的存在性。以对的安德烈-奎伦同调为基础的阻塞理论是所使用的阿尔廷理论的核心要素。我们特别给出了代数同调和模数同调与对的同调之间的长精确序列,并定义了对的小平-斯宾塞类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Versality for pairs

For a pair (algebra, module) with equidimensional and isolated singularity we establish the existence of a versal henselian deformation. Obstruction theory in terms of an André-Quillen cohomology for pairs is a central ingredient in the Artin theory used. In particular we give a long exact sequence relating the algebra cohomology and the module cohomology with the cohomology of the pair and define a Kodaira-Spencer class for pairs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信