Panpan Zhang , Wenjiang Feng , Peng Zhao , Yang Song
{"title":"具有数字校准功能的 18 位 1-MS/s 全差分 SAR ADC,实现 96.1 dB SNDR","authors":"Panpan Zhang , Wenjiang Feng , Peng Zhao , Yang Song","doi":"10.1016/j.mejo.2024.106297","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a 18-bit 1 MS/s fully-differential Successive-Approximation-Register Analog-to-Digital Converter (SAR ADC) achieving an ENOB of 15.7-bit. To achieve higher performance, a differential DAC utilizing both split and monotonic switching timing is designed. For both dynamic and static performance improvement, five techniques are proposed. First, a foreground digital self-calibration method based on normalized-full-scale-referencing is described to eliminate the capacitor mismatch errors. L-segment capacitors are utilized to measure and calculate the bit weights of other capacitors. Second, a DNL enhancement technique is presented. The fractional capacitors are used to subtract an analog voltage from the DAC before the conversion is finished, which further improve the ADC performance. Third, an adaptive-tracking-extra-bit-trail together with comparator noise extraction and correction for further accuracy enhancement is proposed. Forth, a harmonic calibration technique, which can efficiently attenuate 2-order and 3-order harmonic is introduced. Fifth, a comparator with ultra-low noise and offset is designed to meet the 18-bit 1-MS/s ADC. The ADC is fabricated in a 0.18-μm 5-V CMOS process. It measures a 96.1 dB SNDR and a 110.7 dB SFDR. The DNL and INL are within ±0.32 LSB and ±0.5 LSB, respectively. The overall power consumption of ADC core, drawn from the 5 V power supply, is 45 mW.</p></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 18-bit 1-MS/s fully-differential SAR ADC with digital calibration achieving 96.1 dB SNDR\",\"authors\":\"Panpan Zhang , Wenjiang Feng , Peng Zhao , Yang Song\",\"doi\":\"10.1016/j.mejo.2024.106297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a 18-bit 1 MS/s fully-differential Successive-Approximation-Register Analog-to-Digital Converter (SAR ADC) achieving an ENOB of 15.7-bit. To achieve higher performance, a differential DAC utilizing both split and monotonic switching timing is designed. For both dynamic and static performance improvement, five techniques are proposed. First, a foreground digital self-calibration method based on normalized-full-scale-referencing is described to eliminate the capacitor mismatch errors. L-segment capacitors are utilized to measure and calculate the bit weights of other capacitors. Second, a DNL enhancement technique is presented. The fractional capacitors are used to subtract an analog voltage from the DAC before the conversion is finished, which further improve the ADC performance. Third, an adaptive-tracking-extra-bit-trail together with comparator noise extraction and correction for further accuracy enhancement is proposed. Forth, a harmonic calibration technique, which can efficiently attenuate 2-order and 3-order harmonic is introduced. Fifth, a comparator with ultra-low noise and offset is designed to meet the 18-bit 1-MS/s ADC. The ADC is fabricated in a 0.18-μm 5-V CMOS process. It measures a 96.1 dB SNDR and a 110.7 dB SFDR. The DNL and INL are within ±0.32 LSB and ±0.5 LSB, respectively. The overall power consumption of ADC core, drawn from the 5 V power supply, is 45 mW.</p></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239124000018\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124000018","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A 18-bit 1-MS/s fully-differential SAR ADC with digital calibration achieving 96.1 dB SNDR
This paper presents a 18-bit 1 MS/s fully-differential Successive-Approximation-Register Analog-to-Digital Converter (SAR ADC) achieving an ENOB of 15.7-bit. To achieve higher performance, a differential DAC utilizing both split and monotonic switching timing is designed. For both dynamic and static performance improvement, five techniques are proposed. First, a foreground digital self-calibration method based on normalized-full-scale-referencing is described to eliminate the capacitor mismatch errors. L-segment capacitors are utilized to measure and calculate the bit weights of other capacitors. Second, a DNL enhancement technique is presented. The fractional capacitors are used to subtract an analog voltage from the DAC before the conversion is finished, which further improve the ADC performance. Third, an adaptive-tracking-extra-bit-trail together with comparator noise extraction and correction for further accuracy enhancement is proposed. Forth, a harmonic calibration technique, which can efficiently attenuate 2-order and 3-order harmonic is introduced. Fifth, a comparator with ultra-low noise and offset is designed to meet the 18-bit 1-MS/s ADC. The ADC is fabricated in a 0.18-μm 5-V CMOS process. It measures a 96.1 dB SNDR and a 110.7 dB SFDR. The DNL and INL are within ±0.32 LSB and ±0.5 LSB, respectively. The overall power consumption of ADC core, drawn from the 5 V power supply, is 45 mW.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.