Jun ZHANG, Lin-qi HUANG, Zhi-xiang LIU, Xi-bing LI
{"title":"动态加载下带有表面缺陷的岩石破坏的周动态模拟","authors":"Jun ZHANG, Lin-qi HUANG, Zhi-xiang LIU, Xi-bing LI","doi":"10.1016/S1003-6326(24)66543-X","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the propagation of surface flaws in rocks under dynamic loading, an elastic−plastic ordinary state-based peridynamic model that considers the compressive to tensile strength ratio is used for numerical tests based on the results of previous experiments. The failure process of rocks containing three-dimensional surface flaws at different angles and depths under dynamic loading is simulated. The simulation results show that the peridynamic model used can well simulate the propagation of three-dimensional cracks in rocks and the failure process of specimens. Peridynamic simulations can be used to obtain strength variation regularity which is consistent with the experimental results. The crack generated on the surface of the specimen penetrates to a certain depth inside the specimen, which is related to the depth of the surface flaw. Shell-like cracks generated inside the specimen join with cracks generated on the surface to form complex three-dimensional cracks.</p></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 7","pages":"Pages 2313-2327"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S100363262466543X/pdf?md5=80ec4f5aba4afb8b96e90dc72ee2c3d1&pid=1-s2.0-S100363262466543X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Peridynamic simulation of rock failure with surface flaw under dynamic loading\",\"authors\":\"Jun ZHANG, Lin-qi HUANG, Zhi-xiang LIU, Xi-bing LI\",\"doi\":\"10.1016/S1003-6326(24)66543-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To investigate the propagation of surface flaws in rocks under dynamic loading, an elastic−plastic ordinary state-based peridynamic model that considers the compressive to tensile strength ratio is used for numerical tests based on the results of previous experiments. The failure process of rocks containing three-dimensional surface flaws at different angles and depths under dynamic loading is simulated. The simulation results show that the peridynamic model used can well simulate the propagation of three-dimensional cracks in rocks and the failure process of specimens. Peridynamic simulations can be used to obtain strength variation regularity which is consistent with the experimental results. The crack generated on the surface of the specimen penetrates to a certain depth inside the specimen, which is related to the depth of the surface flaw. Shell-like cracks generated inside the specimen join with cracks generated on the surface to form complex three-dimensional cracks.</p></div>\",\"PeriodicalId\":23191,\"journal\":{\"name\":\"Transactions of Nonferrous Metals Society of China\",\"volume\":\"34 7\",\"pages\":\"Pages 2313-2327\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S100363262466543X/pdf?md5=80ec4f5aba4afb8b96e90dc72ee2c3d1&pid=1-s2.0-S100363262466543X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of Nonferrous Metals Society of China\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100363262466543X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100363262466543X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Peridynamic simulation of rock failure with surface flaw under dynamic loading
To investigate the propagation of surface flaws in rocks under dynamic loading, an elastic−plastic ordinary state-based peridynamic model that considers the compressive to tensile strength ratio is used for numerical tests based on the results of previous experiments. The failure process of rocks containing three-dimensional surface flaws at different angles and depths under dynamic loading is simulated. The simulation results show that the peridynamic model used can well simulate the propagation of three-dimensional cracks in rocks and the failure process of specimens. Peridynamic simulations can be used to obtain strength variation regularity which is consistent with the experimental results. The crack generated on the surface of the specimen penetrates to a certain depth inside the specimen, which is related to the depth of the surface flaw. Shell-like cracks generated inside the specimen join with cracks generated on the surface to form complex three-dimensional cracks.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.