聚合物基复合材料:五元复合材料

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
{"title":"聚合物基复合材料:五元复合材料","authors":"","doi":"10.1016/j.compstruct.2024.118419","DOIUrl":null,"url":null,"abstract":"<div><p>Pentamodes are known for their almost zero shear modulus. Polymer Matrix Composites are renowned for multiple advantages, such as their ability to withstand harsh conditions and prolonged usage. In the current study, a combination of these two technologies, i.e. Pentamode-based Polymer Matrix Composites (PPMCs) are proposed for application in seismic isolation. Bearings composed of pentamode layers embedded into polymer matrices are proposed. It is demonstrated that PPMCs feature a shear response improved up to 33 % compared to conventional pentamode specimens. By adding stiffening plates to PPMCs their compressive response can be improved up to 24 %. PPMCs with layers rotated every 45° are suggested to overcome the pentamodes’ anisotropy and their shear stiffness is proved to be increased by up to 26 %. The bearings’ failure mechanisms confirm the aforementioned findings. Real-life seismic excitations illustrate the applicability of PPMCs in seismic isolation and highlight the shear response improvement of up to 39 % offered by PPMCs compared to conventional pentamode devices.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer Matrix Composites: The case of pentamodes\",\"authors\":\"\",\"doi\":\"10.1016/j.compstruct.2024.118419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pentamodes are known for their almost zero shear modulus. Polymer Matrix Composites are renowned for multiple advantages, such as their ability to withstand harsh conditions and prolonged usage. In the current study, a combination of these two technologies, i.e. Pentamode-based Polymer Matrix Composites (PPMCs) are proposed for application in seismic isolation. Bearings composed of pentamode layers embedded into polymer matrices are proposed. It is demonstrated that PPMCs feature a shear response improved up to 33 % compared to conventional pentamode specimens. By adding stiffening plates to PPMCs their compressive response can be improved up to 24 %. PPMCs with layers rotated every 45° are suggested to overcome the pentamodes’ anisotropy and their shear stiffness is proved to be increased by up to 26 %. The bearings’ failure mechanisms confirm the aforementioned findings. Real-life seismic excitations illustrate the applicability of PPMCs in seismic isolation and highlight the shear response improvement of up to 39 % offered by PPMCs compared to conventional pentamode devices.</p></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324005476\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324005476","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

五元复合材料以其几乎为零的剪切模量而闻名。聚合物基复合材料具有多种优点,例如能够承受恶劣条件和长时间使用。在当前的研究中,我们提出了这两种技术的组合,即基于五极管的聚合物基复合材料 (PPMC),并将其应用于隔震领域。研究提出了由嵌入聚合物基质的五模层组成的支座。研究表明,与传统的五模试样相比,PPMC 的剪切响应可提高 33%。通过在 PPMC 中添加加劲板,其压缩响应可提高 24%。为了克服五模态的各向异性,建议在 PPMC 上每隔 45° 旋转一层,这样剪切刚度最多可提高 26%。轴承的失效机制证实了上述发现。实际地震激励说明了 PPMCs 在隔震中的适用性,并强调与传统的五阳极装置相比,PPMCs 的剪切响应最多可提高 39%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polymer Matrix Composites: The case of pentamodes

Pentamodes are known for their almost zero shear modulus. Polymer Matrix Composites are renowned for multiple advantages, such as their ability to withstand harsh conditions and prolonged usage. In the current study, a combination of these two technologies, i.e. Pentamode-based Polymer Matrix Composites (PPMCs) are proposed for application in seismic isolation. Bearings composed of pentamode layers embedded into polymer matrices are proposed. It is demonstrated that PPMCs feature a shear response improved up to 33 % compared to conventional pentamode specimens. By adding stiffening plates to PPMCs their compressive response can be improved up to 24 %. PPMCs with layers rotated every 45° are suggested to overcome the pentamodes’ anisotropy and their shear stiffness is proved to be increased by up to 26 %. The bearings’ failure mechanisms confirm the aforementioned findings. Real-life seismic excitations illustrate the applicability of PPMCs in seismic isolation and highlight the shear response improvement of up to 39 % offered by PPMCs compared to conventional pentamode devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信