直到四阶的高效指数罗森布洛克方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
B. Cano , M.J. Moreta
{"title":"直到四阶的高效指数罗森布洛克方法","authors":"B. Cano ,&nbsp;M.J. Moreta","doi":"10.1016/j.cam.2024.116158","DOIUrl":null,"url":null,"abstract":"<div><p>In a previous paper, a technique was described to avoid order reduction with exponential Rosenbrock methods when integrating initial boundary value problems with time-dependent boundary conditions. That requires to calculate some information on the boundary from the given data. In the present paper we prove that, under some assumptions on the coefficients of the method which are mainly always satisfied, no numerical differentiation is required to approximate that information in order to achieve order 4 for parabolic problems with Dirichlet boundary conditions. With Robin/Neumann ones, just numerical differentiation in time may be necessary for order 4, but none for order <span><math><mrow><mo>≤</mo><mn>3</mn></mrow></math></span>.</p><p>Furthermore, as with this technique it is not necessary to impose any stiff order conditions, in search of efficiency, we recommend some methods of classical orders 2, 3 and 4 and we give some comparisons with several methods in the literature, with the corresponding stiff order.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377042724004072/pdfft?md5=8949791707da4e1a1fc108adf49d7214&pid=1-s2.0-S0377042724004072-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficient exponential Rosenbrock methods till order four\",\"authors\":\"B. Cano ,&nbsp;M.J. Moreta\",\"doi\":\"10.1016/j.cam.2024.116158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a previous paper, a technique was described to avoid order reduction with exponential Rosenbrock methods when integrating initial boundary value problems with time-dependent boundary conditions. That requires to calculate some information on the boundary from the given data. In the present paper we prove that, under some assumptions on the coefficients of the method which are mainly always satisfied, no numerical differentiation is required to approximate that information in order to achieve order 4 for parabolic problems with Dirichlet boundary conditions. With Robin/Neumann ones, just numerical differentiation in time may be necessary for order 4, but none for order <span><math><mrow><mo>≤</mo><mn>3</mn></mrow></math></span>.</p><p>Furthermore, as with this technique it is not necessary to impose any stiff order conditions, in search of efficiency, we recommend some methods of classical orders 2, 3 and 4 and we give some comparisons with several methods in the literature, with the corresponding stiff order.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0377042724004072/pdfft?md5=8949791707da4e1a1fc108adf49d7214&pid=1-s2.0-S0377042724004072-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724004072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在之前的一篇论文中,介绍了一种在积分具有时间相关边界条件的初始边界值问题时,避免指数罗森布洛克方法阶次降低的技术。这需要从给定数据中计算出一些边界信息。在本文中,我们证明了在方法系数的一些假设条件下(这些假设条件主要是始终满足的),不需要数值微分来近似这些信息,就能使具有 Dirichlet 边界条件的抛物线问题达到 4 阶。对于 Robin/Neumann 方法,阶数 4 可能只需要时间数值微分,而阶数 ≤3 则不需要。此外,由于该技术不需要施加任何硬阶数条件,为了提高效率,我们推荐了一些经典的阶数为 2、3 和 4 的方法,并与文献中几种具有相应硬阶数的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient exponential Rosenbrock methods till order four

In a previous paper, a technique was described to avoid order reduction with exponential Rosenbrock methods when integrating initial boundary value problems with time-dependent boundary conditions. That requires to calculate some information on the boundary from the given data. In the present paper we prove that, under some assumptions on the coefficients of the method which are mainly always satisfied, no numerical differentiation is required to approximate that information in order to achieve order 4 for parabolic problems with Dirichlet boundary conditions. With Robin/Neumann ones, just numerical differentiation in time may be necessary for order 4, but none for order 3.

Furthermore, as with this technique it is not necessary to impose any stiff order conditions, in search of efficiency, we recommend some methods of classical orders 2, 3 and 4 and we give some comparisons with several methods in the literature, with the corresponding stiff order.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信