多功能分层电子表皮:揭示自修复机制,提高传感和屏蔽性能

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
{"title":"多功能分层电子表皮:揭示自修复机制,提高传感和屏蔽性能","authors":"","doi":"10.1016/j.compscitech.2024.110769","DOIUrl":null,"url":null,"abstract":"<div><p>In light of advancements in electronic skins (E-skins), their application in extreme environments poses significant challenges. Inspired by real human skin, we have developed a hierarchical structured electronic skin that utilizes flexible carbon fiber fabric as a framework. Copper nanoflakes and embedded sensors function as the neural layer, while Ethylene Vinyl Acetate acts as the dermal layer, and Polytetrafluoroethylene is employed as the epidermal layer. The reported E-skin demonstrates outstanding flexibility, excellent heat resistance, robust mechanical properties (fracture strength of 1600 MPa, Young's modulus approximately 3.8 GPa), exceptional bending/compression strain performance, excellent hydrophobicity (water contact angle of 120°), effective electromagnetic shielding performance (approximately 45 dB total shielding effectiveness for X-band), and electromagnetic wave absorption capability. Additionally, this E-skin possesses self-healing properties, capable of restoring to its original hydrophobic state within 30 s under a 9V voltage through the Joule heating effect, complemented by corresponding theoretical and mathematical modeling. This E-skin introduces a novel, environmentally friendly, and operationally simple strategy for enhancing the extreme environment resistance and durability of flexible devices.</p></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional hierarchical electronic skins: Unveiling self-repairing mechanisms and advancements in sensing and shielding performance\",\"authors\":\"\",\"doi\":\"10.1016/j.compscitech.2024.110769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In light of advancements in electronic skins (E-skins), their application in extreme environments poses significant challenges. Inspired by real human skin, we have developed a hierarchical structured electronic skin that utilizes flexible carbon fiber fabric as a framework. Copper nanoflakes and embedded sensors function as the neural layer, while Ethylene Vinyl Acetate acts as the dermal layer, and Polytetrafluoroethylene is employed as the epidermal layer. The reported E-skin demonstrates outstanding flexibility, excellent heat resistance, robust mechanical properties (fracture strength of 1600 MPa, Young's modulus approximately 3.8 GPa), exceptional bending/compression strain performance, excellent hydrophobicity (water contact angle of 120°), effective electromagnetic shielding performance (approximately 45 dB total shielding effectiveness for X-band), and electromagnetic wave absorption capability. Additionally, this E-skin possesses self-healing properties, capable of restoring to its original hydrophobic state within 30 s under a 9V voltage through the Joule heating effect, complemented by corresponding theoretical and mathematical modeling. This E-skin introduces a novel, environmentally friendly, and operationally simple strategy for enhancing the extreme environment resistance and durability of flexible devices.</p></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824003397\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824003397","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

随着电子皮肤(E-skin)技术的进步,其在极端环境中的应用也面临着巨大挑战。受真实人体皮肤的启发,我们开发了一种分层结构的电子皮肤,利用柔性碳纤维织物作为框架。纳米铜片和嵌入式传感器作为神经层,乙烯-醋酸乙烯作为真皮层,聚四氟乙烯作为表皮层。所报告的电子皮肤具有出色的柔韧性、优异的耐热性、坚固的机械性能(断裂强度为 1600 兆帕,杨氏模量约为 3.8 GPa)、优异的弯曲/压缩应变性能、优异的疏水性(水接触角为 120°)、有效的电磁屏蔽性能(X 波段总屏蔽效能约为 45 分贝)以及电磁波吸收能力。此外,这种电子皮肤还具有自愈特性,在 9V 电压下,通过焦耳加热效应,能在 30 秒内恢复到原来的疏水状态,并辅以相应的理论和数学建模。这种电子皮肤为增强柔性设备的极端环境耐受性和耐用性引入了一种新颖、环保且操作简单的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multifunctional hierarchical electronic skins: Unveiling self-repairing mechanisms and advancements in sensing and shielding performance

Multifunctional hierarchical electronic skins: Unveiling self-repairing mechanisms and advancements in sensing and shielding performance

In light of advancements in electronic skins (E-skins), their application in extreme environments poses significant challenges. Inspired by real human skin, we have developed a hierarchical structured electronic skin that utilizes flexible carbon fiber fabric as a framework. Copper nanoflakes and embedded sensors function as the neural layer, while Ethylene Vinyl Acetate acts as the dermal layer, and Polytetrafluoroethylene is employed as the epidermal layer. The reported E-skin demonstrates outstanding flexibility, excellent heat resistance, robust mechanical properties (fracture strength of 1600 MPa, Young's modulus approximately 3.8 GPa), exceptional bending/compression strain performance, excellent hydrophobicity (water contact angle of 120°), effective electromagnetic shielding performance (approximately 45 dB total shielding effectiveness for X-band), and electromagnetic wave absorption capability. Additionally, this E-skin possesses self-healing properties, capable of restoring to its original hydrophobic state within 30 s under a 9V voltage through the Joule heating effect, complemented by corresponding theoretical and mathematical modeling. This E-skin introduces a novel, environmentally friendly, and operationally simple strategy for enhancing the extreme environment resistance and durability of flexible devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信