Aleksandra Grzelakowska , Balaraman Kalyanaraman , Jacek Zielonka
{"title":"用于检测过亚硝酸盐的小分子探针","authors":"Aleksandra Grzelakowska , Balaraman Kalyanaraman , Jacek Zielonka","doi":"10.1016/j.rbc.2024.100034","DOIUrl":null,"url":null,"abstract":"<div><p>Peroxynitrite (ONOO<sup>−</sup>/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO<sup>−</sup> to determine its role in biological processes. In this review, we discuss various approaches used to detect ONOO<sup>−</sup> in cell-free and cellular systems with the major emphasis on small-molecule chemical probes. We review the chemical principles and mechanisms responsible for the formation of the detectable products, and plausible limitations of the probes. We recommend the use of boronate-based chemical probes for ONOO<sup>−</sup>, as they react directly and rapidly with ONOO<sup>−</sup>, they produce minor but ONOO<sup>−</sup>‒specific products, and the reaction kinetics and mechanism have been rigorously characterized. Specific experimental approaches and protocols for the detection of ONOO<sup>−</sup> in cell-free, cellular, and <em>in vivo</em> systems using boronate-based molecular probes are provided (as shown in Boxes 1-6).</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":"10 ","pages":"Article 100034"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773176624000154/pdfft?md5=a4723535d75e5476ac6136a1e8cdeac7&pid=1-s2.0-S2773176624000154-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Small molecule probes for peroxynitrite detection\",\"authors\":\"Aleksandra Grzelakowska , Balaraman Kalyanaraman , Jacek Zielonka\",\"doi\":\"10.1016/j.rbc.2024.100034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Peroxynitrite (ONOO<sup>−</sup>/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO<sup>−</sup> to determine its role in biological processes. In this review, we discuss various approaches used to detect ONOO<sup>−</sup> in cell-free and cellular systems with the major emphasis on small-molecule chemical probes. We review the chemical principles and mechanisms responsible for the formation of the detectable products, and plausible limitations of the probes. We recommend the use of boronate-based chemical probes for ONOO<sup>−</sup>, as they react directly and rapidly with ONOO<sup>−</sup>, they produce minor but ONOO<sup>−</sup>‒specific products, and the reaction kinetics and mechanism have been rigorously characterized. Specific experimental approaches and protocols for the detection of ONOO<sup>−</sup> in cell-free, cellular, and <em>in vivo</em> systems using boronate-based molecular probes are provided (as shown in Boxes 1-6).</p></div>\",\"PeriodicalId\":101065,\"journal\":{\"name\":\"Redox Biochemistry and Chemistry\",\"volume\":\"10 \",\"pages\":\"Article 100034\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773176624000154/pdfft?md5=a4723535d75e5476ac6136a1e8cdeac7&pid=1-s2.0-S2773176624000154-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biochemistry and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773176624000154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biochemistry and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773176624000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Peroxynitrite (ONOO−/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO− to determine its role in biological processes. In this review, we discuss various approaches used to detect ONOO− in cell-free and cellular systems with the major emphasis on small-molecule chemical probes. We review the chemical principles and mechanisms responsible for the formation of the detectable products, and plausible limitations of the probes. We recommend the use of boronate-based chemical probes for ONOO−, as they react directly and rapidly with ONOO−, they produce minor but ONOO−‒specific products, and the reaction kinetics and mechanism have been rigorously characterized. Specific experimental approaches and protocols for the detection of ONOO− in cell-free, cellular, and in vivo systems using boronate-based molecular probes are provided (as shown in Boxes 1-6).