{"title":"在波浪搅拌式一次性生物反应器中强化 Rindera graeca 转基因根的繁殖和脱氧雪腐镰刀菌素的分泌","authors":"","doi":"10.1016/j.cep.2024.109905","DOIUrl":null,"url":null,"abstract":"<div><p>For millennia, plants have been a source of natural medicines used by humankind. In vitro cultures of plant organs, e.g., transgenic roots, provide a suitable environment for maintaining plant biomass and continuously producing plant-derived bioproducts. The in vitro cultures of plant biomass can be efficiently scaled up using disposable bioreactors with wave-type agitation conditions. The study aimed to investigate the influence of wave-type agitation conditions supported by the WAVE 25 bioreactor on biomass proliferation and secondary metabolite production offered by the in vitro system of <em>Rindera graeca</em> transgenic root culture. Two morphologically different pellets of <em>R. graeca</em> biomass have been observed: highly ramified for cultures performed at <em>Re<sub>L</sub></em> < 4000 and compacted for cultures performed at <em>Re<sub>L</sub></em> > 5200. The growth of transgenic root biomass cultured in the WAVE 25 bioreactor at <em>Re<sub>L</sub></em> = 1325 was over two times higher than for cultures performed in small-scale systems of oscillatory shaken Erlenmeyer flasks.</p></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0255270124002435/pdfft?md5=9bc3cd6853baffa95ef083e3796cda48&pid=1-s2.0-S0255270124002435-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Intensification of Rindera graeca transgenic roots proliferation and deoxyshikonin secretion in wave-agitated disposable bioreactor\",\"authors\":\"\",\"doi\":\"10.1016/j.cep.2024.109905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For millennia, plants have been a source of natural medicines used by humankind. In vitro cultures of plant organs, e.g., transgenic roots, provide a suitable environment for maintaining plant biomass and continuously producing plant-derived bioproducts. The in vitro cultures of plant biomass can be efficiently scaled up using disposable bioreactors with wave-type agitation conditions. The study aimed to investigate the influence of wave-type agitation conditions supported by the WAVE 25 bioreactor on biomass proliferation and secondary metabolite production offered by the in vitro system of <em>Rindera graeca</em> transgenic root culture. Two morphologically different pellets of <em>R. graeca</em> biomass have been observed: highly ramified for cultures performed at <em>Re<sub>L</sub></em> < 4000 and compacted for cultures performed at <em>Re<sub>L</sub></em> > 5200. The growth of transgenic root biomass cultured in the WAVE 25 bioreactor at <em>Re<sub>L</sub></em> = 1325 was over two times higher than for cultures performed in small-scale systems of oscillatory shaken Erlenmeyer flasks.</p></div>\",\"PeriodicalId\":9929,\"journal\":{\"name\":\"Chemical Engineering and Processing - Process Intensification\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0255270124002435/pdfft?md5=9bc3cd6853baffa95ef083e3796cda48&pid=1-s2.0-S0255270124002435-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering and Processing - Process Intensification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0255270124002435\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124002435","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
千百年来,植物一直是人类使用的天然药物的来源。植物器官(如转基因根)的体外培养为保持植物生物量和持续生产植物衍生生物产品提供了合适的环境。利用一次性生物反应器和波浪式搅拌条件,可以有效地扩大植物生物质体外培养的规模。本研究旨在探讨波浪型搅拌条件对 Rindera graeca 转基因根离体培养系统的生物质增殖和次生代谢产物产量的影响。我们观察到了两种形态各异的 R. graeca 生物质颗粒:在 ReL < 4000 条件下培养的生物质颗粒呈高分枝状,而在 ReL > 5200 条件下培养的生物质颗粒呈紧凑状。在 ReL = 1325 的 WAVE 25 生物反应器中培养的转基因根生物质的生长量比在小规模振荡摇动的埃尔伦迈耶烧瓶系统中培养的高出两倍多。
Intensification of Rindera graeca transgenic roots proliferation and deoxyshikonin secretion in wave-agitated disposable bioreactor
For millennia, plants have been a source of natural medicines used by humankind. In vitro cultures of plant organs, e.g., transgenic roots, provide a suitable environment for maintaining plant biomass and continuously producing plant-derived bioproducts. The in vitro cultures of plant biomass can be efficiently scaled up using disposable bioreactors with wave-type agitation conditions. The study aimed to investigate the influence of wave-type agitation conditions supported by the WAVE 25 bioreactor on biomass proliferation and secondary metabolite production offered by the in vitro system of Rindera graeca transgenic root culture. Two morphologically different pellets of R. graeca biomass have been observed: highly ramified for cultures performed at ReL < 4000 and compacted for cultures performed at ReL > 5200. The growth of transgenic root biomass cultured in the WAVE 25 bioreactor at ReL = 1325 was over two times higher than for cultures performed in small-scale systems of oscillatory shaken Erlenmeyer flasks.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.