论穆西拉克-奥利兹空间中有理函数的逼近

IF 0.9 3区 数学 Q2 MATHEMATICS
Wojciech M. Kozlowski , Gianluca Vinti
{"title":"论穆西拉克-奥利兹空间中有理函数的逼近","authors":"Wojciech M. Kozlowski ,&nbsp;Gianluca Vinti","doi":"10.1016/j.jat.2024.106083","DOIUrl":null,"url":null,"abstract":"<div><p>We consider best approximation by rational functions in Musielak–Orlicz spaces of real-valued measurable functions over the unit interval equipped with the Lebesgue measure. We prove several properties of the respective multi-value projection operator, including its semi-continuity. Our results generalise known results for Lebesgue and variable Lebesgues spaces, and can be applied to special cases including Orlicz spaces and variable Lebesgue spaces with weights. We touch upon applications to image processing.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000716/pdfft?md5=772962309c292532c60924a31afa1fa7&pid=1-s2.0-S0021904524000716-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On approximation by rational functions in Musielak–Orlicz spaces\",\"authors\":\"Wojciech M. Kozlowski ,&nbsp;Gianluca Vinti\",\"doi\":\"10.1016/j.jat.2024.106083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider best approximation by rational functions in Musielak–Orlicz spaces of real-valued measurable functions over the unit interval equipped with the Lebesgue measure. We prove several properties of the respective multi-value projection operator, including its semi-continuity. Our results generalise known results for Lebesgue and variable Lebesgues spaces, and can be applied to special cases including Orlicz spaces and variable Lebesgue spaces with weights. We touch upon applications to image processing.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021904524000716/pdfft?md5=772962309c292532c60924a31afa1fa7&pid=1-s2.0-S0021904524000716-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904524000716\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524000716","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是在单位区间上的实值可测函数的 Musielak-Orlicz 空间中,用有理函数进行最佳逼近,并配备 Lebesgue 度量。我们证明了相应多值投影算子的几个性质,包括其半连续性。我们的结果概括了已知的 Lebesgue 和可变 Lebesgues 空间的结果,并可应用于特殊情况,包括 Orlicz 空间和有权重的可变 Lebesgue 空间。我们还谈到了在图像处理中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On approximation by rational functions in Musielak–Orlicz spaces

We consider best approximation by rational functions in Musielak–Orlicz spaces of real-valued measurable functions over the unit interval equipped with the Lebesgue measure. We prove several properties of the respective multi-value projection operator, including its semi-continuity. Our results generalise known results for Lebesgue and variable Lebesgues spaces, and can be applied to special cases including Orlicz spaces and variable Lebesgue spaces with weights. We touch upon applications to image processing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信