Chenyu Wang , Mingshan Sun , Chao Yang , Haiyang Wang , Jie Wang , Lin Mao , Yao Yang , Tao Ying , Paul K. Chu , Xiaoqin Zeng
{"title":"纯镁在生理介质中的降解行为及表面腐蚀产物膜的生长机理","authors":"Chenyu Wang , Mingshan Sun , Chao Yang , Haiyang Wang , Jie Wang , Lin Mao , Yao Yang , Tao Ying , Paul K. Chu , Xiaoqin Zeng","doi":"10.1016/j.jma.2024.05.012","DOIUrl":null,"url":null,"abstract":"<div><div>Pure Mg boasting a relatively small corrosion rate is a potential biodegradable metal material for implants. However, its degradation behavior in the complex physiological environment is still a lack of understanding. In this work, we investigated the effect of corrosion product film layers on the degradation behavior of pure Mg in physiological environments. Pure Mg shows a faster corrosion rate in simulated body fluid (SBF) compared to NaCl solution. Hydrogen evolution experiments indicate that the degradation rate of pure Mg in SBF decreases rapidly within the first 12 h but stabilizes afterward. The rapid deposition of low-solubility calcium phosphate on the pure Mg in SBF provides protection to the substrate, resulting in a gradual decrease in the degradation rates. Consequently, the corrosion product film of pure Mg formed in SBF exhibits a layered structure, with the upper layer consisting of dense Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> and the lower layer consisting of Mg(OH)<sub>2</sub>/MgO. Electrochemical impedance spectroscopy (EIS) shows that the resistance of the corrosion product film increases over time, indicating gradual strengthening of the corrosion resistance. The 4-week degradation results in the femoral marrow cavity of mice are consistent with the result in SBF <em>in vitro</em>.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 4","pages":"Pages 1523-1535"},"PeriodicalIF":15.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation behavior of pure Mg in the physiological medium and growth mechanism of surface corrosion product films\",\"authors\":\"Chenyu Wang , Mingshan Sun , Chao Yang , Haiyang Wang , Jie Wang , Lin Mao , Yao Yang , Tao Ying , Paul K. Chu , Xiaoqin Zeng\",\"doi\":\"10.1016/j.jma.2024.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pure Mg boasting a relatively small corrosion rate is a potential biodegradable metal material for implants. However, its degradation behavior in the complex physiological environment is still a lack of understanding. In this work, we investigated the effect of corrosion product film layers on the degradation behavior of pure Mg in physiological environments. Pure Mg shows a faster corrosion rate in simulated body fluid (SBF) compared to NaCl solution. Hydrogen evolution experiments indicate that the degradation rate of pure Mg in SBF decreases rapidly within the first 12 h but stabilizes afterward. The rapid deposition of low-solubility calcium phosphate on the pure Mg in SBF provides protection to the substrate, resulting in a gradual decrease in the degradation rates. Consequently, the corrosion product film of pure Mg formed in SBF exhibits a layered structure, with the upper layer consisting of dense Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> and the lower layer consisting of Mg(OH)<sub>2</sub>/MgO. Electrochemical impedance spectroscopy (EIS) shows that the resistance of the corrosion product film increases over time, indicating gradual strengthening of the corrosion resistance. The 4-week degradation results in the femoral marrow cavity of mice are consistent with the result in SBF <em>in vitro</em>.</div></div>\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"13 4\",\"pages\":\"Pages 1523-1535\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213956724001865\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956724001865","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Degradation behavior of pure Mg in the physiological medium and growth mechanism of surface corrosion product films
Pure Mg boasting a relatively small corrosion rate is a potential biodegradable metal material for implants. However, its degradation behavior in the complex physiological environment is still a lack of understanding. In this work, we investigated the effect of corrosion product film layers on the degradation behavior of pure Mg in physiological environments. Pure Mg shows a faster corrosion rate in simulated body fluid (SBF) compared to NaCl solution. Hydrogen evolution experiments indicate that the degradation rate of pure Mg in SBF decreases rapidly within the first 12 h but stabilizes afterward. The rapid deposition of low-solubility calcium phosphate on the pure Mg in SBF provides protection to the substrate, resulting in a gradual decrease in the degradation rates. Consequently, the corrosion product film of pure Mg formed in SBF exhibits a layered structure, with the upper layer consisting of dense Ca3(PO4)2/Mg3(PO4)2 and the lower layer consisting of Mg(OH)2/MgO. Electrochemical impedance spectroscopy (EIS) shows that the resistance of the corrosion product film increases over time, indicating gradual strengthening of the corrosion resistance. The 4-week degradation results in the femoral marrow cavity of mice are consistent with the result in SBF in vitro.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.