Frederick Kojo Chaway Acquah, Jeremiah Paul Konadu Takyi, Heather R. Beem
{"title":"低成本粒子图像测速系统的设计与鉴定","authors":"Frederick Kojo Chaway Acquah, Jeremiah Paul Konadu Takyi, Heather R. Beem","doi":"10.1016/j.ohx.2024.e00563","DOIUrl":null,"url":null,"abstract":"<div><p>Particle Image Velocimetry (PIV) is considered the gold standard technique for flow visualization. However, its cost (at least tens of thousands of dollars) can prove inhibitive in its standard form. This article presents an alternative design, leveraging off-the-shelf and open-source options for each key component involved: camera, laser module, optical components, tracer particles, and analysis software. Flow visualization is a crucial technique to connect theory to practice in teaching and researching fluid mechanics. Despite the ubiquity of this field within engineering curricula, many undergraduate institutions globally forego utilizing such equipment, given the barriers to setting it up. The availability of this low-cost alternative (∼$500) that can be built in-house offers a path forward. Characterization was done by visualizing the rotational flow generated by a magnetic stirrer in a cylindrical beaker. The velocity magnitude around the stirrer bar measured by the low-cost PIV system was compared to expected values calculated analytically. The percent difference was between 1–2% when the flow stayed two-dimensional but increased as the flow began developing into more of a 3-D flow. Repeatability varied no more than 6% between experiments. This platform holds the potential for reliable replication across institutions broadly.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000579/pdfft?md5=2c5df693befc5699c04626b9ebaa95a0&pid=1-s2.0-S2468067224000579-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Design and characterization of a low-cost particle image velocimetry system\",\"authors\":\"Frederick Kojo Chaway Acquah, Jeremiah Paul Konadu Takyi, Heather R. Beem\",\"doi\":\"10.1016/j.ohx.2024.e00563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Particle Image Velocimetry (PIV) is considered the gold standard technique for flow visualization. However, its cost (at least tens of thousands of dollars) can prove inhibitive in its standard form. This article presents an alternative design, leveraging off-the-shelf and open-source options for each key component involved: camera, laser module, optical components, tracer particles, and analysis software. Flow visualization is a crucial technique to connect theory to practice in teaching and researching fluid mechanics. Despite the ubiquity of this field within engineering curricula, many undergraduate institutions globally forego utilizing such equipment, given the barriers to setting it up. The availability of this low-cost alternative (∼$500) that can be built in-house offers a path forward. Characterization was done by visualizing the rotational flow generated by a magnetic stirrer in a cylindrical beaker. The velocity magnitude around the stirrer bar measured by the low-cost PIV system was compared to expected values calculated analytically. The percent difference was between 1–2% when the flow stayed two-dimensional but increased as the flow began developing into more of a 3-D flow. Repeatability varied no more than 6% between experiments. This platform holds the potential for reliable replication across institutions broadly.</p></div>\",\"PeriodicalId\":37503,\"journal\":{\"name\":\"HardwareX\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000579/pdfft?md5=2c5df693befc5699c04626b9ebaa95a0&pid=1-s2.0-S2468067224000579-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HardwareX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and characterization of a low-cost particle image velocimetry system
Particle Image Velocimetry (PIV) is considered the gold standard technique for flow visualization. However, its cost (at least tens of thousands of dollars) can prove inhibitive in its standard form. This article presents an alternative design, leveraging off-the-shelf and open-source options for each key component involved: camera, laser module, optical components, tracer particles, and analysis software. Flow visualization is a crucial technique to connect theory to practice in teaching and researching fluid mechanics. Despite the ubiquity of this field within engineering curricula, many undergraduate institutions globally forego utilizing such equipment, given the barriers to setting it up. The availability of this low-cost alternative (∼$500) that can be built in-house offers a path forward. Characterization was done by visualizing the rotational flow generated by a magnetic stirrer in a cylindrical beaker. The velocity magnitude around the stirrer bar measured by the low-cost PIV system was compared to expected values calculated analytically. The percent difference was between 1–2% when the flow stayed two-dimensional but increased as the flow began developing into more of a 3-D flow. Repeatability varied no more than 6% between experiments. This platform holds the potential for reliable replication across institutions broadly.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.