时间分数 PDE 和 PIDE 非均匀 IMEX-L1 有限元方法的最佳误差估计

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Aditi Tomar , Lok Pati Tripathi , Amiya K. Pani
{"title":"时间分数 PDE 和 PIDE 非均匀 IMEX-L1 有限元方法的最佳误差估计","authors":"Aditi Tomar ,&nbsp;Lok Pati Tripathi ,&nbsp;Amiya K. Pani","doi":"10.1016/j.apnum.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Stability and optimal convergence analysis of a non-uniform implicit-explicit L1 finite element method (IMEX-L1-FEM) is studied for a class of time-fractional linear partial differential/integro-differential equations with non-self-adjoint elliptic part having (space-time) variable coefficients. The proposed scheme is based on a combination of an IMEX-L1 method on graded mesh in the temporal direction and a finite element method in the spatial direction. With the help of a discrete fractional Grönwall inequality, global almost optimal error estimates in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>- and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norms are derived for the problem with initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>∩</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>. The novelty of our approach is based on managing the interaction of the L1 approximation of the fractional derivative and the time discrete elliptic operator to derive the optimal estimate in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm directly. Furthermore, a super convergence result is established when the elliptic operator is self-adjoint with time and space varying coefficients, and as a consequence, an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> error estimate is obtained for 2D problems that too with the initial condition is in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>∩</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>. All results proved in this paper are valid uniformly as <span><math><mi>α</mi><mo>→</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msup></math></span>, where <em>α</em> is the order of the Caputo fractional derivative. Numerical experiments are presented to validate our theoretical findings.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal error estimates of a non-uniform IMEX-L1 finite element method for time fractional PDEs and PIDEs\",\"authors\":\"Aditi Tomar ,&nbsp;Lok Pati Tripathi ,&nbsp;Amiya K. Pani\",\"doi\":\"10.1016/j.apnum.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stability and optimal convergence analysis of a non-uniform implicit-explicit L1 finite element method (IMEX-L1-FEM) is studied for a class of time-fractional linear partial differential/integro-differential equations with non-self-adjoint elliptic part having (space-time) variable coefficients. The proposed scheme is based on a combination of an IMEX-L1 method on graded mesh in the temporal direction and a finite element method in the spatial direction. With the help of a discrete fractional Grönwall inequality, global almost optimal error estimates in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>- and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norms are derived for the problem with initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>∩</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>. The novelty of our approach is based on managing the interaction of the L1 approximation of the fractional derivative and the time discrete elliptic operator to derive the optimal estimate in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm directly. Furthermore, a super convergence result is established when the elliptic operator is self-adjoint with time and space varying coefficients, and as a consequence, an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> error estimate is obtained for 2D problems that too with the initial condition is in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>∩</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>. All results proved in this paper are valid uniformly as <span><math><mi>α</mi><mo>→</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msup></math></span>, where <em>α</em> is the order of the Caputo fractional derivative. Numerical experiments are presented to validate our theoretical findings.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

针对一类具有(时空)可变系数的非自交椭圆部分的时分线性偏微分/微分方程,研究了非均匀隐式-显式 L1 有限元方法(IMEX-L1-FEM)的稳定性和最佳收敛性分析。所提出的方案基于时间方向上分级网格上的 IMEX-L1 方法和空间方向上的有限元方法的组合。在离散分数格伦沃不等式的帮助下,对于初始数据为 u0∈H01(Ω)∩H2(Ω) 的问题,得出了 L2 和 H1 准则下的全局几乎最优误差估计值。我们方法的新颖之处在于管理分数导数的 L1 近似值与时间离散椭圆算子的相互作用,从而直接得出 H1 规范下的最优估计值。此外,当椭圆算子是具有时间和空间变化系数的自联合算子时,建立了一个超收敛结果,因此,对于初始条件也在 H01(Ω)∩H2(Ω)中的二维问题,可以获得 L∞ 误差估计。本文证明的所有结果在 α→1- 时均匀有效,其中 α 是卡普托分数导数的阶数。本文给出了数值实验来验证我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal error estimates of a non-uniform IMEX-L1 finite element method for time fractional PDEs and PIDEs

Stability and optimal convergence analysis of a non-uniform implicit-explicit L1 finite element method (IMEX-L1-FEM) is studied for a class of time-fractional linear partial differential/integro-differential equations with non-self-adjoint elliptic part having (space-time) variable coefficients. The proposed scheme is based on a combination of an IMEX-L1 method on graded mesh in the temporal direction and a finite element method in the spatial direction. With the help of a discrete fractional Grönwall inequality, global almost optimal error estimates in L2- and H1-norms are derived for the problem with initial data u0H01(Ω)H2(Ω). The novelty of our approach is based on managing the interaction of the L1 approximation of the fractional derivative and the time discrete elliptic operator to derive the optimal estimate in H1-norm directly. Furthermore, a super convergence result is established when the elliptic operator is self-adjoint with time and space varying coefficients, and as a consequence, an L error estimate is obtained for 2D problems that too with the initial condition is in H01(Ω)H2(Ω). All results proved in this paper are valid uniformly as α1, where α is the order of the Caputo fractional derivative. Numerical experiments are presented to validate our theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信