Shilin Wang , Xu Gong , Ruihua Shao , Lejun Xu , Yitong Li , Fenfen He , Qinzheng Wang , Xi Wang , Huaibin Wang , Chengshan Xu , Xuning Feng
{"title":"不同灭火剂对热失控后锂离子电池排出气体火灾的抑制效果:综合实验和数值研究","authors":"Shilin Wang , Xu Gong , Ruihua Shao , Lejun Xu , Yitong Li , Fenfen He , Qinzheng Wang , Xi Wang , Huaibin Wang , Chengshan Xu , Xuning Feng","doi":"10.1016/j.firesaf.2024.104227","DOIUrl":null,"url":null,"abstract":"<div><p>During the thermal runaway process of lithium-ion batteries, the release of vaporized electrolyte and combustible gases can lead to the formation of a jet flame, posing a significant fire or explosion risk. In order to deal with the threat of lithium-ion battery vent gas fires to the safety of energy storage power stations, it's crucial to identify effective fire extinguishing agents for lithium-ion battery systems. This study employs a combination of experimental and numerical simulation methods to assess the suppression capabilities of CO<sub>2</sub>, N<sub>2</sub>, and HFC-227ea on vent gas/air premixed flames originating from lithium-ion batteries with various cathode materials. Laminar flame speed of vent gas/air/extinguishing agent premixed flames at specific equivalence ratios were measured using a Bunsen burner device under ambient temperature and atmospheric pressure conditions. Additionally, numerical calculations of laminar flame speed and adiabatic flame temperature were conducted using CHEMKIN-Pro, accompanied by an analysis of the chemical inhibition mechanism of HFC-227ea. The findings reveal that although HFC-227ea may slightly elevate the adiabatic flame temperature at lower equivalence ratios, its overall fire extinguishing efficacy surpasses that of CO<sub>2</sub> and N<sub>2</sub>. These results offer valuable insights for selecting appropriate fire extinguishing agents for energy storage power stations, thereby enhancing the safety standards of energy storage systems.</p></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression effects of different extinguishing agents on vent gases fires from lithium-ion batteries after thermal runaway: A comprehensive experimental and numerical study\",\"authors\":\"Shilin Wang , Xu Gong , Ruihua Shao , Lejun Xu , Yitong Li , Fenfen He , Qinzheng Wang , Xi Wang , Huaibin Wang , Chengshan Xu , Xuning Feng\",\"doi\":\"10.1016/j.firesaf.2024.104227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During the thermal runaway process of lithium-ion batteries, the release of vaporized electrolyte and combustible gases can lead to the formation of a jet flame, posing a significant fire or explosion risk. In order to deal with the threat of lithium-ion battery vent gas fires to the safety of energy storage power stations, it's crucial to identify effective fire extinguishing agents for lithium-ion battery systems. This study employs a combination of experimental and numerical simulation methods to assess the suppression capabilities of CO<sub>2</sub>, N<sub>2</sub>, and HFC-227ea on vent gas/air premixed flames originating from lithium-ion batteries with various cathode materials. Laminar flame speed of vent gas/air/extinguishing agent premixed flames at specific equivalence ratios were measured using a Bunsen burner device under ambient temperature and atmospheric pressure conditions. Additionally, numerical calculations of laminar flame speed and adiabatic flame temperature were conducted using CHEMKIN-Pro, accompanied by an analysis of the chemical inhibition mechanism of HFC-227ea. The findings reveal that although HFC-227ea may slightly elevate the adiabatic flame temperature at lower equivalence ratios, its overall fire extinguishing efficacy surpasses that of CO<sub>2</sub> and N<sub>2</sub>. These results offer valuable insights for selecting appropriate fire extinguishing agents for energy storage power stations, thereby enhancing the safety standards of energy storage systems.</p></div>\",\"PeriodicalId\":50445,\"journal\":{\"name\":\"Fire Safety Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379711224001401\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711224001401","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Suppression effects of different extinguishing agents on vent gases fires from lithium-ion batteries after thermal runaway: A comprehensive experimental and numerical study
During the thermal runaway process of lithium-ion batteries, the release of vaporized electrolyte and combustible gases can lead to the formation of a jet flame, posing a significant fire or explosion risk. In order to deal with the threat of lithium-ion battery vent gas fires to the safety of energy storage power stations, it's crucial to identify effective fire extinguishing agents for lithium-ion battery systems. This study employs a combination of experimental and numerical simulation methods to assess the suppression capabilities of CO2, N2, and HFC-227ea on vent gas/air premixed flames originating from lithium-ion batteries with various cathode materials. Laminar flame speed of vent gas/air/extinguishing agent premixed flames at specific equivalence ratios were measured using a Bunsen burner device under ambient temperature and atmospheric pressure conditions. Additionally, numerical calculations of laminar flame speed and adiabatic flame temperature were conducted using CHEMKIN-Pro, accompanied by an analysis of the chemical inhibition mechanism of HFC-227ea. The findings reveal that although HFC-227ea may slightly elevate the adiabatic flame temperature at lower equivalence ratios, its overall fire extinguishing efficacy surpasses that of CO2 and N2. These results offer valuable insights for selecting appropriate fire extinguishing agents for energy storage power stations, thereby enhancing the safety standards of energy storage systems.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.