{"title":"可生物降解的牛皮纸木质素亲水苯酚甲醛泡沫的合成与表征","authors":"","doi":"10.1016/j.susmat.2024.e01064","DOIUrl":null,"url":null,"abstract":"<div><p>Phenol formaldehyde foams, extensively utilized in wide range of applications face challenges due to depleting petroleum resources and adverse environmental concerns. This study explores a promising shift to biobased alternatives, specifically investigating the use of Kraft lignin (KL) by replacing about 10 to 50% phenol content to synthesize open-cell hydrophilic phenolic foams. The produced foams undergo comprehensive testing to evaluate wetting properties, porosity, mechanical strength, and biodegradation potential. Remarkably, foams with a high percentage of Kraft lignin exhibit outstanding physical and wetting characteristics. Notably, substituting 50% of phenol with KL gave rise to a foam with a density of 40 kg/m<sup>3</sup>, open cell porosity of about 100%, water absorption capacity of 2100%, and an average water uptake rate of 0.9 cm<sup>3</sup>/s. Furthermore, these lignin-substituted foams display enhanced biodegradability compared with their petroleum-based counterparts. The foam with the 40% phenol substitution exhibits the highest weight loss of approximately 68% in 15 days during the biodegradation test. The biodegradation was further confirmed using scanning electron microscopy and FT-IR analysis of the degraded samples.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of biodegradable Kraft lignin-based hydrophilic phenol formaldehyde foams\",\"authors\":\"\",\"doi\":\"10.1016/j.susmat.2024.e01064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phenol formaldehyde foams, extensively utilized in wide range of applications face challenges due to depleting petroleum resources and adverse environmental concerns. This study explores a promising shift to biobased alternatives, specifically investigating the use of Kraft lignin (KL) by replacing about 10 to 50% phenol content to synthesize open-cell hydrophilic phenolic foams. The produced foams undergo comprehensive testing to evaluate wetting properties, porosity, mechanical strength, and biodegradation potential. Remarkably, foams with a high percentage of Kraft lignin exhibit outstanding physical and wetting characteristics. Notably, substituting 50% of phenol with KL gave rise to a foam with a density of 40 kg/m<sup>3</sup>, open cell porosity of about 100%, water absorption capacity of 2100%, and an average water uptake rate of 0.9 cm<sup>3</sup>/s. Furthermore, these lignin-substituted foams display enhanced biodegradability compared with their petroleum-based counterparts. The foam with the 40% phenol substitution exhibits the highest weight loss of approximately 68% in 15 days during the biodegradation test. The biodegradation was further confirmed using scanning electron microscopy and FT-IR analysis of the degraded samples.</p></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993724002446\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724002446","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Synthesis and characterization of biodegradable Kraft lignin-based hydrophilic phenol formaldehyde foams
Phenol formaldehyde foams, extensively utilized in wide range of applications face challenges due to depleting petroleum resources and adverse environmental concerns. This study explores a promising shift to biobased alternatives, specifically investigating the use of Kraft lignin (KL) by replacing about 10 to 50% phenol content to synthesize open-cell hydrophilic phenolic foams. The produced foams undergo comprehensive testing to evaluate wetting properties, porosity, mechanical strength, and biodegradation potential. Remarkably, foams with a high percentage of Kraft lignin exhibit outstanding physical and wetting characteristics. Notably, substituting 50% of phenol with KL gave rise to a foam with a density of 40 kg/m3, open cell porosity of about 100%, water absorption capacity of 2100%, and an average water uptake rate of 0.9 cm3/s. Furthermore, these lignin-substituted foams display enhanced biodegradability compared with their petroleum-based counterparts. The foam with the 40% phenol substitution exhibits the highest weight loss of approximately 68% in 15 days during the biodegradation test. The biodegradation was further confirmed using scanning electron microscopy and FT-IR analysis of the degraded samples.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.