具有两个延迟分量的半马尔可夫跃迁神经网络的有限时间 H∞ 同步与随机采样数据控制

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
T. Radhika, A. Chandrasekar, V. Vijayakumar
{"title":"具有两个延迟分量的半马尔可夫跃迁神经网络的有限时间 H∞ 同步与随机采样数据控制","authors":"T. Radhika,&nbsp;A. Chandrasekar,&nbsp;V. Vijayakumar","doi":"10.1016/j.bulsci.2024.103482","DOIUrl":null,"url":null,"abstract":"<div><p>This article investigates the finite-time <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> synchronization for semi-Markov jump neural networks with two delay components based on stochastic sampled data control. Additionally, the parametric uncertainties are randomly varying which follows the Bernoulli distributed sequences. In the stochastic sampled data control, the sampling interval <span><math><mo>′</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is supposed to be two different values in the time-varying component with given probability conditions. By constructing triple and quadruple integral term in the Lyapunov-Krasovskii functional (LKF) a new integral inequality technique is addressed to derive the main results. Dissimilar from previous literature, involving the new integral inequality, a delay dependent finite-time <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> synchronization requirements are acquired with regard to linear matrix inequalities (LMIs). In the end, the effectiveness of the considered stochastic sampled data control finite time synchronization scheme is highlighted by numerical examples.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103482"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-time H∞ synchronization of semi-Markov jump neural networks with two delay components with stochastic sampled-data control\",\"authors\":\"T. Radhika,&nbsp;A. Chandrasekar,&nbsp;V. Vijayakumar\",\"doi\":\"10.1016/j.bulsci.2024.103482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article investigates the finite-time <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> synchronization for semi-Markov jump neural networks with two delay components based on stochastic sampled data control. Additionally, the parametric uncertainties are randomly varying which follows the Bernoulli distributed sequences. In the stochastic sampled data control, the sampling interval <span><math><mo>′</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is supposed to be two different values in the time-varying component with given probability conditions. By constructing triple and quadruple integral term in the Lyapunov-Krasovskii functional (LKF) a new integral inequality technique is addressed to derive the main results. Dissimilar from previous literature, involving the new integral inequality, a delay dependent finite-time <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> synchronization requirements are acquired with regard to linear matrix inequalities (LMIs). In the end, the effectiveness of the considered stochastic sampled data control finite time synchronization scheme is highlighted by numerical examples.</p></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"195 \",\"pages\":\"Article 103482\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724001003\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文基于随机采样数据控制,研究了具有两个延迟分量的半马尔可夫跃迁神经网络的有限时间 H∞ 同步。此外,参数不确定性是随机变化的,遵循伯努利分布序列。在随机采样数据控制中,采样间隔 ′m′ 假设为时变分量中的两个不同值,并给定概率条件。通过在 Lyapunov-Krasovskii 函数(LKF)中构建三重和四重积分项,一种新的积分不等式技术被用于推导主要结果。与以往文献不同的是,利用新的积分不等式,可以在线性矩阵不等式(LMI)方面获得与延迟相关的有限时间 H∞ 同步要求。最后,通过数值示例强调了所考虑的随机采样数据控制有限时间同步方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-time H∞ synchronization of semi-Markov jump neural networks with two delay components with stochastic sampled-data control

This article investigates the finite-time H synchronization for semi-Markov jump neural networks with two delay components based on stochastic sampled data control. Additionally, the parametric uncertainties are randomly varying which follows the Bernoulli distributed sequences. In the stochastic sampled data control, the sampling interval m is supposed to be two different values in the time-varying component with given probability conditions. By constructing triple and quadruple integral term in the Lyapunov-Krasovskii functional (LKF) a new integral inequality technique is addressed to derive the main results. Dissimilar from previous literature, involving the new integral inequality, a delay dependent finite-time H synchronization requirements are acquired with regard to linear matrix inequalities (LMIs). In the end, the effectiveness of the considered stochastic sampled data control finite time synchronization scheme is highlighted by numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信