用基于模糊发散的加权邻域粗糙集减少属性

IF 3.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nguyen Ngoc Thuy , Sartra Wongthanavasu
{"title":"用基于模糊发散的加权邻域粗糙集减少属性","authors":"Nguyen Ngoc Thuy ,&nbsp;Sartra Wongthanavasu","doi":"10.1016/j.ijar.2024.109256","DOIUrl":null,"url":null,"abstract":"<div><p>Neighborhood rough sets are well-known as an interesting approach for attribute reduction in numerical/continuous data tables. Nevertheless, in most existing neighborhood rough set models, all attributes are assigned the same weights. This may undermine the capacity to select important attributes, especially for high-dimensional datasets. To establish attribute weights, in this study, we will utilize fuzzy divergence to evaluate the distinction between each attribute with the whole attributes in classifying the objects to the decision classes. Then, we construct a new model of fuzzy divergence-based weighted neighborhood rough sets, as well as propose an efficient attribute reduction algorithm. In our method, reducts are considered under the scenario of the <em>α</em>-certainty region, which is introduced as an extension of the positive region. Several related properties will show that attribute reduction based on the <em>α</em>-certainty region can significantly enhance the ability to identify optimal attributes due to reducing the influence of noisy information. To validate the effectiveness of the proposed algorithm, we conduct experiments on 12 benchmark datasets. The results demonstrate that our algorithm not only significantly reduces the number of attributes compared to the original data but also enhances classification accuracy. In comparison to some other state-of-the-art algorithms, the proposed algorithm also outperforms in terms of classification accuracy for almost all of datasets, while also maintaining a highly competitive reduct size and computation time.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"173 ","pages":"Article 109256"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attribute reduction with fuzzy divergence-based weighted neighborhood rough sets\",\"authors\":\"Nguyen Ngoc Thuy ,&nbsp;Sartra Wongthanavasu\",\"doi\":\"10.1016/j.ijar.2024.109256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neighborhood rough sets are well-known as an interesting approach for attribute reduction in numerical/continuous data tables. Nevertheless, in most existing neighborhood rough set models, all attributes are assigned the same weights. This may undermine the capacity to select important attributes, especially for high-dimensional datasets. To establish attribute weights, in this study, we will utilize fuzzy divergence to evaluate the distinction between each attribute with the whole attributes in classifying the objects to the decision classes. Then, we construct a new model of fuzzy divergence-based weighted neighborhood rough sets, as well as propose an efficient attribute reduction algorithm. In our method, reducts are considered under the scenario of the <em>α</em>-certainty region, which is introduced as an extension of the positive region. Several related properties will show that attribute reduction based on the <em>α</em>-certainty region can significantly enhance the ability to identify optimal attributes due to reducing the influence of noisy information. To validate the effectiveness of the proposed algorithm, we conduct experiments on 12 benchmark datasets. The results demonstrate that our algorithm not only significantly reduces the number of attributes compared to the original data but also enhances classification accuracy. In comparison to some other state-of-the-art algorithms, the proposed algorithm also outperforms in terms of classification accuracy for almost all of datasets, while also maintaining a highly competitive reduct size and computation time.</p></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"173 \",\"pages\":\"Article 109256\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24001439\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24001439","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,邻域粗糙集是减少数值/连续数据表中属性的一种有趣方法。然而,在大多数现有的邻域粗糙集模型中,所有属性都被赋予相同的权重。这可能会削弱选择重要属性的能力,尤其是对于高维数据集而言。为了确定属性权重,在本研究中,我们将利用模糊发散来评估在将对象分类到决策类时每个属性与整个属性之间的区别。然后,我们构建了一个基于模糊发散的加权邻域粗糙集新模型,并提出了一种高效的属性还原算法。在我们的方法中,还原是在α-确定性区域的情况下考虑的,α-确定性区域是作为正区域的扩展而引入的。几个相关属性将表明,基于 α-确定性区域的属性还原由于减少了噪声信息的影响,可以显著提高识别最优属性的能力。为了验证所提算法的有效性,我们在 12 个基准数据集上进行了实验。结果表明,与原始数据相比,我们的算法不仅大大减少了属性数量,还提高了分类准确性。与其他一些最先进的算法相比,所提出的算法在几乎所有数据集的分类准确率方面都表现出色,同时还保持了极具竞争力的还原大小和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attribute reduction with fuzzy divergence-based weighted neighborhood rough sets

Neighborhood rough sets are well-known as an interesting approach for attribute reduction in numerical/continuous data tables. Nevertheless, in most existing neighborhood rough set models, all attributes are assigned the same weights. This may undermine the capacity to select important attributes, especially for high-dimensional datasets. To establish attribute weights, in this study, we will utilize fuzzy divergence to evaluate the distinction between each attribute with the whole attributes in classifying the objects to the decision classes. Then, we construct a new model of fuzzy divergence-based weighted neighborhood rough sets, as well as propose an efficient attribute reduction algorithm. In our method, reducts are considered under the scenario of the α-certainty region, which is introduced as an extension of the positive region. Several related properties will show that attribute reduction based on the α-certainty region can significantly enhance the ability to identify optimal attributes due to reducing the influence of noisy information. To validate the effectiveness of the proposed algorithm, we conduct experiments on 12 benchmark datasets. The results demonstrate that our algorithm not only significantly reduces the number of attributes compared to the original data but also enhances classification accuracy. In comparison to some other state-of-the-art algorithms, the proposed algorithm also outperforms in terms of classification accuracy for almost all of datasets, while also maintaining a highly competitive reduct size and computation time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信