L2 艾普利-波特-切恩希尔伯特复数

IF 1.7 2区 数学 Q1 MATHEMATICS
Tom Holt , Riccardo Piovani
{"title":"L2 艾普利-波特-切恩希尔伯特复数","authors":"Tom Holt ,&nbsp;Riccardo Piovani","doi":"10.1016/j.jfa.2024.110596","DOIUrl":null,"url":null,"abstract":"<div><p>We analyse the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> Hilbert complexes naturally associated to a non-compact complex manifold, namely the ones which originate from the Dolbeault and the Aeppli-Bott-Chern complexes. In particular we define the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> Aeppli-Bott-Chern Hilbert complex and examine its main properties on general Hermitian manifolds, on complete Kähler manifolds and on Galois coverings of compact complex manifolds. The main results are achieved through the study of self-adjoint extensions of various differential operators whose kernels, on compact Hermitian manifolds, are isomorphic to either Aeppli or Bott-Chern cohomology.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624002842/pdfft?md5=fc2f4d3b51bf5120f24f9f01a7316a7b&pid=1-s2.0-S0022123624002842-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The L2 Aeppli-Bott-Chern Hilbert complex\",\"authors\":\"Tom Holt ,&nbsp;Riccardo Piovani\",\"doi\":\"10.1016/j.jfa.2024.110596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyse the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> Hilbert complexes naturally associated to a non-compact complex manifold, namely the ones which originate from the Dolbeault and the Aeppli-Bott-Chern complexes. In particular we define the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> Aeppli-Bott-Chern Hilbert complex and examine its main properties on general Hermitian manifolds, on complete Kähler manifolds and on Galois coverings of compact complex manifolds. The main results are achieved through the study of self-adjoint extensions of various differential operators whose kernels, on compact Hermitian manifolds, are isomorphic to either Aeppli or Bott-Chern cohomology.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624002842/pdfft?md5=fc2f4d3b51bf5120f24f9f01a7316a7b&pid=1-s2.0-S0022123624002842-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624002842\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002842","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了与非紧凑复流形自然相关的 L2 希尔伯特复数,即源于多尔贝复数和艾普利-波特-切恩复数的那些复数。我们特别定义了 L2 Aeppli-Bott-Chern 希尔伯特复数,并研究了它在一般赫尔墨斯流形、完全凯勒流形和紧凑复流形伽罗瓦覆盖上的主要性质。主要结果是通过研究各种微分算子的自相关扩展而得出的,这些微分算子的核在紧凑赫尔墨斯流形上与 Aeppli 或 Bott-Chern 同调同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The L2 Aeppli-Bott-Chern Hilbert complex

We analyse the L2 Hilbert complexes naturally associated to a non-compact complex manifold, namely the ones which originate from the Dolbeault and the Aeppli-Bott-Chern complexes. In particular we define the L2 Aeppli-Bott-Chern Hilbert complex and examine its main properties on general Hermitian manifolds, on complete Kähler manifolds and on Galois coverings of compact complex manifolds. The main results are achieved through the study of self-adjoint extensions of various differential operators whose kernels, on compact Hermitian manifolds, are isomorphic to either Aeppli or Bott-Chern cohomology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信