Ilhame Amirali , Burcu Fedakar , Gabil M. Amiraliyev
{"title":"中性 Volterra 积分微分方程的二阶数值方法","authors":"Ilhame Amirali , Burcu Fedakar , Gabil M. Amiraliyev","doi":"10.1016/j.cam.2024.116160","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is dedicated to obtaining an approximate solution for a neutral second-order Volterra integro-differential equation. Our method is the second-order accurate finite difference scheme on a uniform mesh. The error analysis is carried out and numerical results are given to support the proposed approach.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second-order numerical method for a neutral Volterra integro-differential equation\",\"authors\":\"Ilhame Amirali , Burcu Fedakar , Gabil M. Amiraliyev\",\"doi\":\"10.1016/j.cam.2024.116160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is dedicated to obtaining an approximate solution for a neutral second-order Volterra integro-differential equation. Our method is the second-order accurate finite difference scheme on a uniform mesh. The error analysis is carried out and numerical results are given to support the proposed approach.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724004096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Second-order numerical method for a neutral Volterra integro-differential equation
This paper is dedicated to obtaining an approximate solution for a neutral second-order Volterra integro-differential equation. Our method is the second-order accurate finite difference scheme on a uniform mesh. The error analysis is carried out and numerical results are given to support the proposed approach.