Yunyao Huang , Leiyang Zhang , Pingji Ge , Ruiyi Jing , Wenjing Shi , Chao Li , Xiang Niu , Vladimir Shur , Haibo Zhang , Shengguo Lu , Yintang Yang , Dawei Wang , Xiaoqin Ke , Li Jin
{"title":"通过连续相变设计揭示低电场下的巨大电致发光效应","authors":"Yunyao Huang , Leiyang Zhang , Pingji Ge , Ruiyi Jing , Wenjing Shi , Chao Li , Xiang Niu , Vladimir Shur , Haibo Zhang , Shengguo Lu , Yintang Yang , Dawei Wang , Xiaoqin Ke , Li Jin","doi":"10.1016/j.apmate.2024.100225","DOIUrl":null,"url":null,"abstract":"<div><p>The reported electrocaloric (EC) effect in ferroelectrics is poised for application in the next generation of solid-state refrigeration technology, exhibiting substantial developmental potential. This study introduces a novel and efficient EC effect strategy in (1–<em>x</em>)Pb(Lu<sub>1/2</sub>Nb<sub>1/2</sub>)O<sub>3</sub>-<em>x</em>PbTiO<sub>3</sub> (PLN-<em>x</em>PT) ceramics for low electric-field-driven devices. Phase-field simulations provide fundamental insights into thermally induced continuous phase transitions, guiding subsequent experimental investigations. A comprehensive composition/temperature-driven phase evolution diagram is constructed, elucidating the sequential transformation from ferroelectric (FE) to antiferroelectric (AFE) and finally to paraelectric (PE) phases for <em>x</em>=0.10−0.18 components. Direct measurements of EC performance highlight <em>x</em>=0.16 as an outstanding performer, exhibiting remarkable properties, including an adiabatic temperature change (Δ<em>T</em>) of 3.03 K, EC strength (Δ<em>T</em>/Δ<em>E</em>) of 0.08 K cm kV<sup>−1</sup>, and a temperature span (<em>T</em><sub>span</sub>) of 31 °C. The superior EC effect performance is attributed to the temperature-induced FE to AFE transition at low electric fields and diffusion phase transition behavior contributing to the wide <em>T</em><sub>span</sub>. This work provides valuable insights into developing high-performance EC effect across broad temperature ranges through the strategic design of continuous phase transitions, offering a simplified and economical approach for advancing ecofriendly and efficient solid-state cooling technologies.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 5","pages":"Article 100225"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000563/pdfft?md5=be349a546d6ace2de32313c7af10175b&pid=1-s2.0-S2772834X24000563-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unveiling a giant electrocaloric effect at low electric fields through continuous phase transition design\",\"authors\":\"Yunyao Huang , Leiyang Zhang , Pingji Ge , Ruiyi Jing , Wenjing Shi , Chao Li , Xiang Niu , Vladimir Shur , Haibo Zhang , Shengguo Lu , Yintang Yang , Dawei Wang , Xiaoqin Ke , Li Jin\",\"doi\":\"10.1016/j.apmate.2024.100225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The reported electrocaloric (EC) effect in ferroelectrics is poised for application in the next generation of solid-state refrigeration technology, exhibiting substantial developmental potential. This study introduces a novel and efficient EC effect strategy in (1–<em>x</em>)Pb(Lu<sub>1/2</sub>Nb<sub>1/2</sub>)O<sub>3</sub>-<em>x</em>PbTiO<sub>3</sub> (PLN-<em>x</em>PT) ceramics for low electric-field-driven devices. Phase-field simulations provide fundamental insights into thermally induced continuous phase transitions, guiding subsequent experimental investigations. A comprehensive composition/temperature-driven phase evolution diagram is constructed, elucidating the sequential transformation from ferroelectric (FE) to antiferroelectric (AFE) and finally to paraelectric (PE) phases for <em>x</em>=0.10−0.18 components. Direct measurements of EC performance highlight <em>x</em>=0.16 as an outstanding performer, exhibiting remarkable properties, including an adiabatic temperature change (Δ<em>T</em>) of 3.03 K, EC strength (Δ<em>T</em>/Δ<em>E</em>) of 0.08 K cm kV<sup>−1</sup>, and a temperature span (<em>T</em><sub>span</sub>) of 31 °C. The superior EC effect performance is attributed to the temperature-induced FE to AFE transition at low electric fields and diffusion phase transition behavior contributing to the wide <em>T</em><sub>span</sub>. This work provides valuable insights into developing high-performance EC effect across broad temperature ranges through the strategic design of continuous phase transitions, offering a simplified and economical approach for advancing ecofriendly and efficient solid-state cooling technologies.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":\"3 5\",\"pages\":\"Article 100225\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000563/pdfft?md5=be349a546d6ace2de32313c7af10175b&pid=1-s2.0-S2772834X24000563-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
据报道,铁电体中的电致冷(EC)效应有望应用于下一代固态制冷技术,展现出巨大的发展潜力。本研究在 (1-x)Pb(Lu1/2Nb1/2)O3-xPbTiO3 (PLN-xPT) 陶瓷中引入了一种新颖高效的 EC 效应策略,用于低电场驱动设备。相场模拟提供了对热诱导连续相变的基本见解,为后续实验研究提供了指导。我们构建了一个全面的成分/温度驱动相变图,阐明了 x=0.10-0.18 成分时从铁电(FE)到反铁电(AFE),最后到副电(PE)相的顺序转变。对电致发光性能的直接测量突出显示了 x=0.16 的卓越性能,包括 3.03 K 的绝热温度变化 (ΔT)、0.08 K cm kV-1 的电致发光强度 (ΔT/ΔE)和 31 °C 的温度跨度 (Tspan)。卓越的导电率效应性能归功于在低电场下由温度引起的 FE 到 AFE 的转变,而扩散相变行为则有助于实现较宽的 Tspan。这项工作为通过连续相变的战略设计在宽温度范围内开发高性能导电率效应提供了宝贵的见解,为推进生态友好型高效固态冷却技术提供了一种简化而经济的方法。
Unveiling a giant electrocaloric effect at low electric fields through continuous phase transition design
The reported electrocaloric (EC) effect in ferroelectrics is poised for application in the next generation of solid-state refrigeration technology, exhibiting substantial developmental potential. This study introduces a novel and efficient EC effect strategy in (1–x)Pb(Lu1/2Nb1/2)O3-xPbTiO3 (PLN-xPT) ceramics for low electric-field-driven devices. Phase-field simulations provide fundamental insights into thermally induced continuous phase transitions, guiding subsequent experimental investigations. A comprehensive composition/temperature-driven phase evolution diagram is constructed, elucidating the sequential transformation from ferroelectric (FE) to antiferroelectric (AFE) and finally to paraelectric (PE) phases for x=0.10−0.18 components. Direct measurements of EC performance highlight x=0.16 as an outstanding performer, exhibiting remarkable properties, including an adiabatic temperature change (ΔT) of 3.03 K, EC strength (ΔT/ΔE) of 0.08 K cm kV−1, and a temperature span (Tspan) of 31 °C. The superior EC effect performance is attributed to the temperature-induced FE to AFE transition at low electric fields and diffusion phase transition behavior contributing to the wide Tspan. This work provides valuable insights into developing high-performance EC effect across broad temperature ranges through the strategic design of continuous phase transitions, offering a simplified and economical approach for advancing ecofriendly and efficient solid-state cooling technologies.