{"title":"灰铸铁和 WC 增强激光包覆制动盘的摩擦学和气载颗粒排放","authors":"","doi":"10.1016/j.wear.2024.205512","DOIUrl":null,"url":null,"abstract":"<div><p>Laser cladding (LC) is a promising technique to overlay a protective coating on grey cast iron (GCI) brake discs to enhance the wear and corrosion resistance. This study utilized a pin-on-disc tribometer in an aerosol chamber to investigate the tribology and airborne particle emissions from tungsten carbides (WC) reinforced coating overlayed onto GCI substrate through laser cladding. Uncoated GCI brake discs served as reference material, while low-metallic (LM) and non-asbestos organic (NAO) brake pads were used as counterparts. The results indicate that LC coating exhibited slightly higher coefficient of friction and significantly lower wear than uncoated GCI discs. Abrasive wear is the dominant wear mechanism for both uncoated GCI brake discs and LC coatings. LC coatings substantially decreased the particle mass concentrations. All three friction pairs displayed a mass weighted size distribution with a major peak around 2–3 μm. The number size distribution was dominated by a mode below 1 μm. Emissions by number were generally low. Meanwhile, all three friction pairs emitted sheared off and agglomerated particles, with iron being the dominant element. Tungsten was identified in the particles emitted from LC coatings, indicating that the hard coating has a potential to wear off and become airborne particles.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0043164824002771/pdfft?md5=70b5ea0ad7155aa4555e43a35d588349&pid=1-s2.0-S0043164824002771-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tribology and airborne particle emissions from grey cast iron and WC reinforced laser cladded brake discs\",\"authors\":\"\",\"doi\":\"10.1016/j.wear.2024.205512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser cladding (LC) is a promising technique to overlay a protective coating on grey cast iron (GCI) brake discs to enhance the wear and corrosion resistance. This study utilized a pin-on-disc tribometer in an aerosol chamber to investigate the tribology and airborne particle emissions from tungsten carbides (WC) reinforced coating overlayed onto GCI substrate through laser cladding. Uncoated GCI brake discs served as reference material, while low-metallic (LM) and non-asbestos organic (NAO) brake pads were used as counterparts. The results indicate that LC coating exhibited slightly higher coefficient of friction and significantly lower wear than uncoated GCI discs. Abrasive wear is the dominant wear mechanism for both uncoated GCI brake discs and LC coatings. LC coatings substantially decreased the particle mass concentrations. All three friction pairs displayed a mass weighted size distribution with a major peak around 2–3 μm. The number size distribution was dominated by a mode below 1 μm. Emissions by number were generally low. Meanwhile, all three friction pairs emitted sheared off and agglomerated particles, with iron being the dominant element. Tungsten was identified in the particles emitted from LC coatings, indicating that the hard coating has a potential to wear off and become airborne particles.</p></div>\",\"PeriodicalId\":23970,\"journal\":{\"name\":\"Wear\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0043164824002771/pdfft?md5=70b5ea0ad7155aa4555e43a35d588349&pid=1-s2.0-S0043164824002771-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043164824002771\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824002771","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Tribology and airborne particle emissions from grey cast iron and WC reinforced laser cladded brake discs
Laser cladding (LC) is a promising technique to overlay a protective coating on grey cast iron (GCI) brake discs to enhance the wear and corrosion resistance. This study utilized a pin-on-disc tribometer in an aerosol chamber to investigate the tribology and airborne particle emissions from tungsten carbides (WC) reinforced coating overlayed onto GCI substrate through laser cladding. Uncoated GCI brake discs served as reference material, while low-metallic (LM) and non-asbestos organic (NAO) brake pads were used as counterparts. The results indicate that LC coating exhibited slightly higher coefficient of friction and significantly lower wear than uncoated GCI discs. Abrasive wear is the dominant wear mechanism for both uncoated GCI brake discs and LC coatings. LC coatings substantially decreased the particle mass concentrations. All three friction pairs displayed a mass weighted size distribution with a major peak around 2–3 μm. The number size distribution was dominated by a mode below 1 μm. Emissions by number were generally low. Meanwhile, all three friction pairs emitted sheared off and agglomerated particles, with iron being the dominant element. Tungsten was identified in the particles emitted from LC coatings, indicating that the hard coating has a potential to wear off and become airborne particles.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.