灰铸铁和 WC 增强激光包覆制动盘的摩擦学和气载颗粒排放

IF 5.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Wear Pub Date : 2024-07-25 DOI:10.1016/j.wear.2024.205512
{"title":"灰铸铁和 WC 增强激光包覆制动盘的摩擦学和气载颗粒排放","authors":"","doi":"10.1016/j.wear.2024.205512","DOIUrl":null,"url":null,"abstract":"<div><p>Laser cladding (LC) is a promising technique to overlay a protective coating on grey cast iron (GCI) brake discs to enhance the wear and corrosion resistance. This study utilized a pin-on-disc tribometer in an aerosol chamber to investigate the tribology and airborne particle emissions from tungsten carbides (WC) reinforced coating overlayed onto GCI substrate through laser cladding. Uncoated GCI brake discs served as reference material, while low-metallic (LM) and non-asbestos organic (NAO) brake pads were used as counterparts. The results indicate that LC coating exhibited slightly higher coefficient of friction and significantly lower wear than uncoated GCI discs. Abrasive wear is the dominant wear mechanism for both uncoated GCI brake discs and LC coatings. LC coatings substantially decreased the particle mass concentrations. All three friction pairs displayed a mass weighted size distribution with a major peak around 2–3 μm. The number size distribution was dominated by a mode below 1 μm. Emissions by number were generally low. Meanwhile, all three friction pairs emitted sheared off and agglomerated particles, with iron being the dominant element. Tungsten was identified in the particles emitted from LC coatings, indicating that the hard coating has a potential to wear off and become airborne particles.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0043164824002771/pdfft?md5=70b5ea0ad7155aa4555e43a35d588349&pid=1-s2.0-S0043164824002771-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tribology and airborne particle emissions from grey cast iron and WC reinforced laser cladded brake discs\",\"authors\":\"\",\"doi\":\"10.1016/j.wear.2024.205512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser cladding (LC) is a promising technique to overlay a protective coating on grey cast iron (GCI) brake discs to enhance the wear and corrosion resistance. This study utilized a pin-on-disc tribometer in an aerosol chamber to investigate the tribology and airborne particle emissions from tungsten carbides (WC) reinforced coating overlayed onto GCI substrate through laser cladding. Uncoated GCI brake discs served as reference material, while low-metallic (LM) and non-asbestos organic (NAO) brake pads were used as counterparts. The results indicate that LC coating exhibited slightly higher coefficient of friction and significantly lower wear than uncoated GCI discs. Abrasive wear is the dominant wear mechanism for both uncoated GCI brake discs and LC coatings. LC coatings substantially decreased the particle mass concentrations. All three friction pairs displayed a mass weighted size distribution with a major peak around 2–3 μm. The number size distribution was dominated by a mode below 1 μm. Emissions by number were generally low. Meanwhile, all three friction pairs emitted sheared off and agglomerated particles, with iron being the dominant element. Tungsten was identified in the particles emitted from LC coatings, indicating that the hard coating has a potential to wear off and become airborne particles.</p></div>\",\"PeriodicalId\":23970,\"journal\":{\"name\":\"Wear\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0043164824002771/pdfft?md5=70b5ea0ad7155aa4555e43a35d588349&pid=1-s2.0-S0043164824002771-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043164824002771\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824002771","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

激光熔覆(LC)是在灰铸铁(GCI)制动盘上覆盖保护涂层以增强其耐磨性和耐腐蚀性的一种很有前途的技术。本研究利用气溶胶室中的针盘摩擦仪研究了通过激光熔覆在 GCI 基体上的碳化钨(WC)增强涂层的摩擦学和气载颗粒排放。未涂层的 GCI 刹车盘作为参考材料,而低金属(LM)和无石棉有机(NAO)刹车片作为对应材料。结果表明,与未涂层的 GCI 刹车盘相比,LC 涂层的摩擦系数略高,磨损程度明显降低。磨料磨损是未涂层 GCI 制动盘和 LC 涂层的主要磨损机制。LC 涂层大大降低了颗粒的质量浓度。所有三种摩擦对都显示出质量加权粒度分布,主要峰值在 2-3 μm 左右。数量粒度分布以 1 μm 以下的模式为主。按数量计算的排放量普遍较低。同时,所有三个摩擦对都释放出剪切和团聚颗粒,其中铁是主要元素。在低浓涂层发射的粒子中发现了钨,这表明硬涂层有可能磨损并成为空气传播的粒子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tribology and airborne particle emissions from grey cast iron and WC reinforced laser cladded brake discs

Laser cladding (LC) is a promising technique to overlay a protective coating on grey cast iron (GCI) brake discs to enhance the wear and corrosion resistance. This study utilized a pin-on-disc tribometer in an aerosol chamber to investigate the tribology and airborne particle emissions from tungsten carbides (WC) reinforced coating overlayed onto GCI substrate through laser cladding. Uncoated GCI brake discs served as reference material, while low-metallic (LM) and non-asbestos organic (NAO) brake pads were used as counterparts. The results indicate that LC coating exhibited slightly higher coefficient of friction and significantly lower wear than uncoated GCI discs. Abrasive wear is the dominant wear mechanism for both uncoated GCI brake discs and LC coatings. LC coatings substantially decreased the particle mass concentrations. All three friction pairs displayed a mass weighted size distribution with a major peak around 2–3 μm. The number size distribution was dominated by a mode below 1 μm. Emissions by number were generally low. Meanwhile, all three friction pairs emitted sheared off and agglomerated particles, with iron being the dominant element. Tungsten was identified in the particles emitted from LC coatings, indicating that the hard coating has a potential to wear off and become airborne particles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wear
Wear 工程技术-材料科学:综合
CiteScore
8.80
自引率
8.00%
发文量
280
审稿时长
47 days
期刊介绍: Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信