干旱胁迫可增强质粒介导的 RNA 干扰,从而有效防治柳叶甲

IF 4.2 1区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"干旱胁迫可增强质粒介导的 RNA 干扰,从而有效防治柳叶甲","authors":"","doi":"10.1016/j.pestbp.2024.106037","DOIUrl":null,"url":null,"abstract":"<div><p>Plastid-mediated RNA interference has emerged as a promising and effective approach for pest management. By expressing high levels of double-stranded RNAs (dsRNAs) in plastid that target essential pest genes, it has been demonstrated to effectively control certain herbivorous beetles and spider mites. However, as plants are sessile organisms, they frequently experience a combination of biotic and abiotic stresses. It remains unclear whether abiotic stress, such as drought stress, influences the accumulation of dsRNAs produced in plastids and its effectiveness in controlling pests. In this study, we aimed to investigate the effects of drought stress on ds<em>ACT</em> expression in transplastomic poplar plants and its control efficiency against the willow leaf beetle (<em>Plagiodera versicolora</em>). Our findings revealed that drought stress did not significantly affect the dsRNA contents in transplastomic poplar plants, but it did lead to higher mortality of insect larvae. This increased mortality may be attributed to increased levels of jasmonic acid and cysteine proteinase inhibitor induced by water deficit. These results contribute to understanding of the mechanisms linking water deficit in plants to insect performance and provide valuable insights for implementing appropriate pest control strategies under drought stress conditions.</p></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drought stress enhances plastid-mediated RNA interference for efficient the willow leaf beetle management\",\"authors\":\"\",\"doi\":\"10.1016/j.pestbp.2024.106037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plastid-mediated RNA interference has emerged as a promising and effective approach for pest management. By expressing high levels of double-stranded RNAs (dsRNAs) in plastid that target essential pest genes, it has been demonstrated to effectively control certain herbivorous beetles and spider mites. However, as plants are sessile organisms, they frequently experience a combination of biotic and abiotic stresses. It remains unclear whether abiotic stress, such as drought stress, influences the accumulation of dsRNAs produced in plastids and its effectiveness in controlling pests. In this study, we aimed to investigate the effects of drought stress on ds<em>ACT</em> expression in transplastomic poplar plants and its control efficiency against the willow leaf beetle (<em>Plagiodera versicolora</em>). Our findings revealed that drought stress did not significantly affect the dsRNA contents in transplastomic poplar plants, but it did lead to higher mortality of insect larvae. This increased mortality may be attributed to increased levels of jasmonic acid and cysteine proteinase inhibitor induced by water deficit. These results contribute to understanding of the mechanisms linking water deficit in plants to insect performance and provide valuable insights for implementing appropriate pest control strategies under drought stress conditions.</p></div>\",\"PeriodicalId\":19828,\"journal\":{\"name\":\"Pesticide Biochemistry and Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesticide Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048357524002700\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524002700","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

质体介导的 RNA 干扰已成为一种前景广阔的有效害虫管理方法。通过在质体中表达针对害虫重要基因的高水平双链 RNA(dsRNA),已证明能有效控制某些食草甲虫和蜘蛛螨。然而,由于植物是无柄生物,它们经常会经受生物和非生物胁迫的共同作用。非生物胁迫(如干旱胁迫)是否会影响质体中产生的 dsRNAs 的积累及其控制害虫的效果,目前仍不清楚。在本研究中,我们旨在研究干旱胁迫对杨树转细胞质中dsACT表达的影响及其对柳叶甲(Plagiodera versicolora)的防治效果。我们的研究结果表明,干旱胁迫对杨树转殖体植株中的dsRNA含量没有显著影响,但却导致昆虫幼虫死亡率升高。死亡率的增加可能是由于缺水引起的茉莉酸和半胱氨酸蛋白酶抑制剂水平的增加。这些结果有助于理解植物缺水与昆虫表现之间的关联机制,并为在干旱胁迫条件下实施适当的害虫控制策略提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Drought stress enhances plastid-mediated RNA interference for efficient the willow leaf beetle management

Drought stress enhances plastid-mediated RNA interference for efficient the willow leaf beetle management

Plastid-mediated RNA interference has emerged as a promising and effective approach for pest management. By expressing high levels of double-stranded RNAs (dsRNAs) in plastid that target essential pest genes, it has been demonstrated to effectively control certain herbivorous beetles and spider mites. However, as plants are sessile organisms, they frequently experience a combination of biotic and abiotic stresses. It remains unclear whether abiotic stress, such as drought stress, influences the accumulation of dsRNAs produced in plastids and its effectiveness in controlling pests. In this study, we aimed to investigate the effects of drought stress on dsACT expression in transplastomic poplar plants and its control efficiency against the willow leaf beetle (Plagiodera versicolora). Our findings revealed that drought stress did not significantly affect the dsRNA contents in transplastomic poplar plants, but it did lead to higher mortality of insect larvae. This increased mortality may be attributed to increased levels of jasmonic acid and cysteine proteinase inhibitor induced by water deficit. These results contribute to understanding of the mechanisms linking water deficit in plants to insect performance and provide valuable insights for implementing appropriate pest control strategies under drought stress conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
8.50%
发文量
238
审稿时长
4.2 months
期刊介绍: Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance. Research Areas Emphasized Include the Biochemistry and Physiology of: • Comparative toxicity • Mode of action • Pathophysiology • Plant growth regulators • Resistance • Other effects of pesticides on both parasites and hosts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信