{"title":"低密度可膨胀聚苯乙烯混凝土材料的动态特性","authors":"Jue Han , Hualin Fan","doi":"10.1016/j.dt.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><div>Expanded polystyrene (EPS) concrete, known for its environmental friendliness, energy absorption capacity, and low impedance, has significant potential application in the fields of wave absorption and vibration reduction. This study designed and prepared EPS concrete materials with four levels of density. Quasi-static uniaxial compression and Split Hopkinson Pressure Bar (SHPB) impact tests were conducted to obtain stress-strain curves, elastic moduli, failure modes, energy absorptions, and strain rate effects of the EPS concrete under quasi-static and dynamic loading conditions. The influences of density on various performance indicators were analyzed. By combining the Zhu-Wang-Tang (ZWT) constitutive model with a modified elastic-brittle model, a modified dynamic constitutive model was proposed. The accuracy of the model was validated by the experimental data. The results indicate that the addition of EPS particles enhances the ductility of the EPS concrete. The EPS concrete has significant strain rate effect, which gets stronger as density increases. The modifiedconstitutive model accurately characterizes the dynamic stress-strain curves of the EPS concrete.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"43 ","pages":"Pages 94-108"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic properties of low-density expandable polystyrene concrete materials\",\"authors\":\"Jue Han , Hualin Fan\",\"doi\":\"10.1016/j.dt.2024.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Expanded polystyrene (EPS) concrete, known for its environmental friendliness, energy absorption capacity, and low impedance, has significant potential application in the fields of wave absorption and vibration reduction. This study designed and prepared EPS concrete materials with four levels of density. Quasi-static uniaxial compression and Split Hopkinson Pressure Bar (SHPB) impact tests were conducted to obtain stress-strain curves, elastic moduli, failure modes, energy absorptions, and strain rate effects of the EPS concrete under quasi-static and dynamic loading conditions. The influences of density on various performance indicators were analyzed. By combining the Zhu-Wang-Tang (ZWT) constitutive model with a modified elastic-brittle model, a modified dynamic constitutive model was proposed. The accuracy of the model was validated by the experimental data. The results indicate that the addition of EPS particles enhances the ductility of the EPS concrete. The EPS concrete has significant strain rate effect, which gets stronger as density increases. The modifiedconstitutive model accurately characterizes the dynamic stress-strain curves of the EPS concrete.</div></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"43 \",\"pages\":\"Pages 94-108\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214914724001764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724001764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic properties of low-density expandable polystyrene concrete materials
Expanded polystyrene (EPS) concrete, known for its environmental friendliness, energy absorption capacity, and low impedance, has significant potential application in the fields of wave absorption and vibration reduction. This study designed and prepared EPS concrete materials with four levels of density. Quasi-static uniaxial compression and Split Hopkinson Pressure Bar (SHPB) impact tests were conducted to obtain stress-strain curves, elastic moduli, failure modes, energy absorptions, and strain rate effects of the EPS concrete under quasi-static and dynamic loading conditions. The influences of density on various performance indicators were analyzed. By combining the Zhu-Wang-Tang (ZWT) constitutive model with a modified elastic-brittle model, a modified dynamic constitutive model was proposed. The accuracy of the model was validated by the experimental data. The results indicate that the addition of EPS particles enhances the ductility of the EPS concrete. The EPS concrete has significant strain rate effect, which gets stronger as density increases. The modifiedconstitutive model accurately characterizes the dynamic stress-strain curves of the EPS concrete.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.