亚扩散问题的高阶数值方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Carla Jesus, Ercília Sousa
{"title":"亚扩散问题的高阶数值方法","authors":"Carla Jesus,&nbsp;Ercília Sousa","doi":"10.1016/j.apnum.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a subdiffusive fractional differential problem characterized by an equation that incorporates a time Riemann-Liouville fractional derivative of order <span><math><mn>1</mn><mo>−</mo><mi>α</mi></math></span>, <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, on its right-hand side, while the diffusive coefficient is allowed to vary with both space and time. An high order numerical method for the subdiffusion problem is derived based on the fractional splines of degree <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span>. The main purpose of this work is to apply fractional splines for approximating the fractional integral in the definition of the Riemann-Liouville fractional derivative, and hence explain how to solve the subdiffusion problem using this approach. It is discussed how the rate of convergence of the numerical method depends on the solution, the degree of the spline and the order of the fractional derivative.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001788/pdfft?md5=1f5d4bf4c00b7e9a89694a19dc45c8c8&pid=1-s2.0-S0168927424001788-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High order numerical method for a subdiffusion problem\",\"authors\":\"Carla Jesus,&nbsp;Ercília Sousa\",\"doi\":\"10.1016/j.apnum.2024.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a subdiffusive fractional differential problem characterized by an equation that incorporates a time Riemann-Liouville fractional derivative of order <span><math><mn>1</mn><mo>−</mo><mi>α</mi></math></span>, <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, on its right-hand side, while the diffusive coefficient is allowed to vary with both space and time. An high order numerical method for the subdiffusion problem is derived based on the fractional splines of degree <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span>. The main purpose of this work is to apply fractional splines for approximating the fractional integral in the definition of the Riemann-Liouville fractional derivative, and hence explain how to solve the subdiffusion problem using this approach. It is discussed how the rate of convergence of the numerical method depends on the solution, the degree of the spline and the order of the fractional derivative.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001788/pdfft?md5=1f5d4bf4c00b7e9a89694a19dc45c8c8&pid=1-s2.0-S0168927424001788-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个亚扩散分式微分问题,其特征是方程的右边包含阶数为 1-α 的时间黎曼-刘维尔分式导数 α∈(0,1),同时允许扩散系数随空间和时间变化。基于度数为 β∈(1,2]的分数样条,推导出了亚扩散问题的高阶数值方法。这项工作的主要目的是应用分数样条逼近黎曼-刘维尔分数导数定义中的分数积分,从而解释如何利用这种方法求解亚扩散问题。文中讨论了数值方法的收敛速度如何取决于解、样条线的阶数和分数导数的阶数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High order numerical method for a subdiffusion problem

We consider a subdiffusive fractional differential problem characterized by an equation that incorporates a time Riemann-Liouville fractional derivative of order 1α, α(0,1), on its right-hand side, while the diffusive coefficient is allowed to vary with both space and time. An high order numerical method for the subdiffusion problem is derived based on the fractional splines of degree β(1,2]. The main purpose of this work is to apply fractional splines for approximating the fractional integral in the definition of the Riemann-Liouville fractional derivative, and hence explain how to solve the subdiffusion problem using this approach. It is discussed how the rate of convergence of the numerical method depends on the solution, the degree of the spline and the order of the fractional derivative.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信