具有纳维-滑移和诺伊曼边界条件的各向异性布森斯克方程的零耗散极限

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Peixin Wang , Qian Li
{"title":"具有纳维-滑移和诺伊曼边界条件的各向异性布森斯克方程的零耗散极限","authors":"Peixin Wang ,&nbsp;Qian Li","doi":"10.1016/j.physd.2024.134301","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the vanishing dissipation limit of the 2D anisotropic Boussinesq equations with the Navier-slip boundary condition for velocity field and the fixed flux boundary condition for temperature in the upper half plane. By constructing boundary layer correctors to compensate for the discrepancies between dissipative equations and non-dissipative equations at the boundary, we prove that the solutions of the anisotropic Boussinesq equations converge to the solutions of the non-dissipative Boussinesq equations in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm. Particularly, we find that the anisotropic dissipation coefficients only affect the rate of convergence, which is different from the phenomenon of the Dirichlet problem of the anisotropic Boussinesq equations in Wang &amp; Xu (2021).</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero dissipation limit of the anisotropic Boussinesq equations with Navier-slip and Neumann boundary conditions\",\"authors\":\"Peixin Wang ,&nbsp;Qian Li\",\"doi\":\"10.1016/j.physd.2024.134301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the vanishing dissipation limit of the 2D anisotropic Boussinesq equations with the Navier-slip boundary condition for velocity field and the fixed flux boundary condition for temperature in the upper half plane. By constructing boundary layer correctors to compensate for the discrepancies between dissipative equations and non-dissipative equations at the boundary, we prove that the solutions of the anisotropic Boussinesq equations converge to the solutions of the non-dissipative Boussinesq equations in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm. Particularly, we find that the anisotropic dissipation coefficients only affect the rate of convergence, which is different from the phenomenon of the Dirichlet problem of the anisotropic Boussinesq equations in Wang &amp; Xu (2021).</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二维各向异性布森斯克方程的耗散消失极限,速度场采用纳维-滑移边界条件,温度在上半平面采用固定通量边界条件。通过构造边界层校正器来补偿耗散方程和非耗散方程在边界上的差异,我们证明了各向异性布辛斯方程的解在 L2 规范下收敛于非耗散布辛斯方程的解。特别是,我们发现各向异性耗散系数只影响收敛速度,这与 Wang & Xu (2021) 中各向异性 Boussinesq 方程的 Dirichlet 问题现象不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero dissipation limit of the anisotropic Boussinesq equations with Navier-slip and Neumann boundary conditions

In this paper, we study the vanishing dissipation limit of the 2D anisotropic Boussinesq equations with the Navier-slip boundary condition for velocity field and the fixed flux boundary condition for temperature in the upper half plane. By constructing boundary layer correctors to compensate for the discrepancies between dissipative equations and non-dissipative equations at the boundary, we prove that the solutions of the anisotropic Boussinesq equations converge to the solutions of the non-dissipative Boussinesq equations in L2-norm. Particularly, we find that the anisotropic dissipation coefficients only affect the rate of convergence, which is different from the phenomenon of the Dirichlet problem of the anisotropic Boussinesq equations in Wang & Xu (2021).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信