具有双离子植入边缘终端的垂直 GaN 肖特基势垒二极管的电气性能和可靠性分析

Chip Pub Date : 2024-09-01 DOI:10.1016/j.chip.2024.100105
Bo Li , Jinpei Lin , Linfei Gao , Zhengweng Ma , Huakai Yang , Zhihao Wu , Hsien-Chin Chiu , Hao-Chung Kuo , Chunfu Zhang , Zhihong Liu , Shuangwu Huang , Wei He , Xinke Liu
{"title":"具有双离子植入边缘终端的垂直 GaN 肖特基势垒二极管的电气性能和可靠性分析","authors":"Bo Li ,&nbsp;Jinpei Lin ,&nbsp;Linfei Gao ,&nbsp;Zhengweng Ma ,&nbsp;Huakai Yang ,&nbsp;Zhihao Wu ,&nbsp;Hsien-Chin Chiu ,&nbsp;Hao-Chung Kuo ,&nbsp;Chunfu Zhang ,&nbsp;Zhihong Liu ,&nbsp;Shuangwu Huang ,&nbsp;Wei He ,&nbsp;Xinke Liu","doi":"10.1016/j.chip.2024.100105","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a gallium nitride (GaN) substrate and its 15 μm epitaxial layer were entirely grown by adopting the hydride vapor phase epitaxy (HVPE) technique. To enhance the breakdown voltage (<em>V</em><sub>BR</sub>) of vertical GaN-on-GaN Schottky barrier diodes (SBDs), a dual ion coimplantation of carbon and helium was employed to create the edge termination. The resulting devices exhibited a low turn-on voltage of 0.55 V, a high <em>I</em><sub>on</sub>/<em>I</em><sub>off</sub> ratio of approximately 10<sup>9</sup>, and a low specific on-resistance of 1.93 mΩ cm<sup>2</sup>. When the ion implantation edge was terminated, the maximum <em>V</em><sub>BR</sub> of the devices reached 1575 V, with an average improvement of 126%. These devices demonstrated a high figure of merit (FOM) of 1.28 GW cm<sup>–2</sup> and showed excellent reliability during pulse stress testing.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 3","pages":"Article 100105"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000236/pdfft?md5=39e7a0c9e23864accd3ca2de9e3d77c6&pid=1-s2.0-S2709472324000236-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrical performance and reliability analysis of vertical gallium nitride Schottky barrier diodes with dual-ion implanted edge termination\",\"authors\":\"Bo Li ,&nbsp;Jinpei Lin ,&nbsp;Linfei Gao ,&nbsp;Zhengweng Ma ,&nbsp;Huakai Yang ,&nbsp;Zhihao Wu ,&nbsp;Hsien-Chin Chiu ,&nbsp;Hao-Chung Kuo ,&nbsp;Chunfu Zhang ,&nbsp;Zhihong Liu ,&nbsp;Shuangwu Huang ,&nbsp;Wei He ,&nbsp;Xinke Liu\",\"doi\":\"10.1016/j.chip.2024.100105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a gallium nitride (GaN) substrate and its 15 μm epitaxial layer were entirely grown by adopting the hydride vapor phase epitaxy (HVPE) technique. To enhance the breakdown voltage (<em>V</em><sub>BR</sub>) of vertical GaN-on-GaN Schottky barrier diodes (SBDs), a dual ion coimplantation of carbon and helium was employed to create the edge termination. The resulting devices exhibited a low turn-on voltage of 0.55 V, a high <em>I</em><sub>on</sub>/<em>I</em><sub>off</sub> ratio of approximately 10<sup>9</sup>, and a low specific on-resistance of 1.93 mΩ cm<sup>2</sup>. When the ion implantation edge was terminated, the maximum <em>V</em><sub>BR</sub> of the devices reached 1575 V, with an average improvement of 126%. These devices demonstrated a high figure of merit (FOM) of 1.28 GW cm<sup>–2</sup> and showed excellent reliability during pulse stress testing.</p></div>\",\"PeriodicalId\":100244,\"journal\":{\"name\":\"Chip\",\"volume\":\"3 3\",\"pages\":\"Article 100105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2709472324000236/pdfft?md5=39e7a0c9e23864accd3ca2de9e3d77c6&pid=1-s2.0-S2709472324000236-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2709472324000236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472324000236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,采用氢化物气相外延(HVPE)技术完全生长了氮化镓(GaN)衬底及其 15 μm 外延层。为了提高垂直氮化镓-氮化镓肖特基势垒二极管(SBD)的击穿电压(VBR),采用了碳和氦的双离子共植入来创建边缘终端。由此产生的器件具有 0.55 V 的低导通电压、约 109 的高离子/关断比和 1.93 mΩ cm2 的低比导通电阻。当离子注入边缘终止时,器件的最大 VBR 达到 1575 V,平均提高了 126%。这些器件的优点系数(FOM)高达 1.28 GW cm-2,并在脉冲应力测试中表现出卓越的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical performance and reliability analysis of vertical gallium nitride Schottky barrier diodes with dual-ion implanted edge termination

In this study, a gallium nitride (GaN) substrate and its 15 μm epitaxial layer were entirely grown by adopting the hydride vapor phase epitaxy (HVPE) technique. To enhance the breakdown voltage (VBR) of vertical GaN-on-GaN Schottky barrier diodes (SBDs), a dual ion coimplantation of carbon and helium was employed to create the edge termination. The resulting devices exhibited a low turn-on voltage of 0.55 V, a high Ion/Ioff ratio of approximately 109, and a low specific on-resistance of 1.93 mΩ cm2. When the ion implantation edge was terminated, the maximum VBR of the devices reached 1575 V, with an average improvement of 126%. These devices demonstrated a high figure of merit (FOM) of 1.28 GW cm–2 and showed excellent reliability during pulse stress testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信