Estefani Y. Hernández-Cruz , Omar E. Aparicio-Trejo , Fadi A. Hammami , Daniel Bar-Shalom , Martin Tepel , Jose Pedraza-Chaverri , Alexandra Scholze
{"title":"肾病中的 N-乙酰半胱氨酸:分子机制、药代动力学和临床疗效","authors":"Estefani Y. Hernández-Cruz , Omar E. Aparicio-Trejo , Fadi A. Hammami , Daniel Bar-Shalom , Martin Tepel , Jose Pedraza-Chaverri , Alexandra Scholze","doi":"10.1016/j.ekir.2024.07.020","DOIUrl":null,"url":null,"abstract":"<div><div>N-acetylcysteine (NAC) has shown beneficial effects in both acute kidney disease and chronic kidney disease (CKD) in preclinical and clinical studies. Different dosage and administration forms of NAC have specific pharmacokinetic properties that determine the temporal pattern of plasma concentrations of NAC and its active metabolites. Especially in acute situations with short-term NAC administration, appropriate NAC and glutathione (GSH) plasma concentrations should be timely ensured. For oral dosage forms, bioavailability needs to be established for the respective NAC formulation. Kidney function influences NAC pharmacokinetics, including a reduction of NAC clearance in advanced CKD. In addition, mechanisms of action underlying beneficial NAC effects depend on kidney function as well as comorbidities, both involving GSH deficiency, alterations in nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent signaling, oxidative stress, mitochondrial dysfunction, and disturbed mitochondrial bioenergetics. This also applies to nonrenal NAC mechanisms. The timing of preventive NAC administration in relation to potential injury is important. NAC administration seems most effective either preceding, or preceding and paralleling conditions that induce tissue damage. Furthermore, studies suggest that very high concentrations of NAC should be avoided because they could exert reductive stress. Delayed administration of NAC might interfere with endogenous repair mechanisms. In conclusion, studies on NAC treatment regimens need to account for both NAC pharmacokinetics and NAC molecular effects. Kidney function of the patient population and pathomechanisms of the kidney disease should guide rational NAC trial design. A targeted trial approach and biomarker-guided protocols could pave the way for the use of NAC in precision medicine.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-acetylcysteine in Kidney Disease: Molecular Mechanisms, Pharmacokinetics, and Clinical Effectiveness\",\"authors\":\"Estefani Y. Hernández-Cruz , Omar E. Aparicio-Trejo , Fadi A. Hammami , Daniel Bar-Shalom , Martin Tepel , Jose Pedraza-Chaverri , Alexandra Scholze\",\"doi\":\"10.1016/j.ekir.2024.07.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>N-acetylcysteine (NAC) has shown beneficial effects in both acute kidney disease and chronic kidney disease (CKD) in preclinical and clinical studies. Different dosage and administration forms of NAC have specific pharmacokinetic properties that determine the temporal pattern of plasma concentrations of NAC and its active metabolites. Especially in acute situations with short-term NAC administration, appropriate NAC and glutathione (GSH) plasma concentrations should be timely ensured. For oral dosage forms, bioavailability needs to be established for the respective NAC formulation. Kidney function influences NAC pharmacokinetics, including a reduction of NAC clearance in advanced CKD. In addition, mechanisms of action underlying beneficial NAC effects depend on kidney function as well as comorbidities, both involving GSH deficiency, alterations in nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent signaling, oxidative stress, mitochondrial dysfunction, and disturbed mitochondrial bioenergetics. This also applies to nonrenal NAC mechanisms. The timing of preventive NAC administration in relation to potential injury is important. NAC administration seems most effective either preceding, or preceding and paralleling conditions that induce tissue damage. Furthermore, studies suggest that very high concentrations of NAC should be avoided because they could exert reductive stress. Delayed administration of NAC might interfere with endogenous repair mechanisms. In conclusion, studies on NAC treatment regimens need to account for both NAC pharmacokinetics and NAC molecular effects. Kidney function of the patient population and pathomechanisms of the kidney disease should guide rational NAC trial design. A targeted trial approach and biomarker-guided protocols could pave the way for the use of NAC in precision medicine.</div></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468024924018503\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468024924018503","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
N-acetylcysteine in Kidney Disease: Molecular Mechanisms, Pharmacokinetics, and Clinical Effectiveness
N-acetylcysteine (NAC) has shown beneficial effects in both acute kidney disease and chronic kidney disease (CKD) in preclinical and clinical studies. Different dosage and administration forms of NAC have specific pharmacokinetic properties that determine the temporal pattern of plasma concentrations of NAC and its active metabolites. Especially in acute situations with short-term NAC administration, appropriate NAC and glutathione (GSH) plasma concentrations should be timely ensured. For oral dosage forms, bioavailability needs to be established for the respective NAC formulation. Kidney function influences NAC pharmacokinetics, including a reduction of NAC clearance in advanced CKD. In addition, mechanisms of action underlying beneficial NAC effects depend on kidney function as well as comorbidities, both involving GSH deficiency, alterations in nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent signaling, oxidative stress, mitochondrial dysfunction, and disturbed mitochondrial bioenergetics. This also applies to nonrenal NAC mechanisms. The timing of preventive NAC administration in relation to potential injury is important. NAC administration seems most effective either preceding, or preceding and paralleling conditions that induce tissue damage. Furthermore, studies suggest that very high concentrations of NAC should be avoided because they could exert reductive stress. Delayed administration of NAC might interfere with endogenous repair mechanisms. In conclusion, studies on NAC treatment regimens need to account for both NAC pharmacokinetics and NAC molecular effects. Kidney function of the patient population and pathomechanisms of the kidney disease should guide rational NAC trial design. A targeted trial approach and biomarker-guided protocols could pave the way for the use of NAC in precision medicine.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.