提高太阳能活性炭-甲醇吸附制冷系统性能的金属添加剂最佳混合比例的实验研究

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
{"title":"提高太阳能活性炭-甲醇吸附制冷系统性能的金属添加剂最佳混合比例的实验研究","authors":"","doi":"10.1016/j.ijrefrig.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>An activated carbon–methanol system can run on low heat (70–100°C). Methanol is dependable and works well with activated carbon because of several benefits, including an appropriate latent heat of evaporation, a low freezing point, and negligible copper corrosion and steel at temperatures below 100 °C. An experimental study of the thermal performance by increasing the adsorption bed thermal conductivity was conducted. Using0 10 % 20 and %30 % of metallic copper powder with activated carbon to improve the bed thermal conductivity. A sample is prepared with 20 % copper powder to find out the improvement of heat transfer characteristics to the cooling effect. The temperature gradient has been tested with two flow rates to examine the coolant performance and increase. Solar energy can be effectively utilized based on low-grade temperature consumption in such systems. This work aims to make an experimental investigation of the thermal performance of an activated carbon-methanol adsorption refrigeration system to study the effect of the enhanced thermal conductivity of the adsorbing bed. Using 0 %, 10 %, 20 %, 30 % of metallic copper powder with activated carbon to enhance the thermal conductivity of the bed, providing a significant improvement in the system efficiency, specific cooling power (SCP), and coefficient of performance of adsorption cooling. It is found that copper filing with a mass concentration of 20 % are appeared the optimal ratio metallic additive to enhance the thermal performance of the system. Moreover, the effect of the hot water flow rate is studied. Results indicated that the addition of 20 % metallic copper filings to the activated carbon lowered the evaporator temperature to reach -5 and -10 °C for heating water flow rates 3 and 2 LPM, respectively. Also, the addition of copper filing enhances the cycle COP of the system by 49 % and 46 % at hot water flow rates of 2and 3 LPM, respectively. The highest cycle COP of the current system reached was 0.92 for the condition 20 % additives at 3 LPM hot water flow rate. Owning the feature of great solar energy availability and the long daily sunny hours, solar-powered adsorption cooling systems have promising potential applications in Egypt. A mathematical model of the system performance is also studied.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of the optimal mixing ratio of metallic additives for improving the performance of the solar activated carbon-methanol adsorption refrigeration system\",\"authors\":\"\",\"doi\":\"10.1016/j.ijrefrig.2024.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An activated carbon–methanol system can run on low heat (70–100°C). Methanol is dependable and works well with activated carbon because of several benefits, including an appropriate latent heat of evaporation, a low freezing point, and negligible copper corrosion and steel at temperatures below 100 °C. An experimental study of the thermal performance by increasing the adsorption bed thermal conductivity was conducted. Using0 10 % 20 and %30 % of metallic copper powder with activated carbon to improve the bed thermal conductivity. A sample is prepared with 20 % copper powder to find out the improvement of heat transfer characteristics to the cooling effect. The temperature gradient has been tested with two flow rates to examine the coolant performance and increase. Solar energy can be effectively utilized based on low-grade temperature consumption in such systems. This work aims to make an experimental investigation of the thermal performance of an activated carbon-methanol adsorption refrigeration system to study the effect of the enhanced thermal conductivity of the adsorbing bed. Using 0 %, 10 %, 20 %, 30 % of metallic copper powder with activated carbon to enhance the thermal conductivity of the bed, providing a significant improvement in the system efficiency, specific cooling power (SCP), and coefficient of performance of adsorption cooling. It is found that copper filing with a mass concentration of 20 % are appeared the optimal ratio metallic additive to enhance the thermal performance of the system. Moreover, the effect of the hot water flow rate is studied. Results indicated that the addition of 20 % metallic copper filings to the activated carbon lowered the evaporator temperature to reach -5 and -10 °C for heating water flow rates 3 and 2 LPM, respectively. Also, the addition of copper filing enhances the cycle COP of the system by 49 % and 46 % at hot water flow rates of 2and 3 LPM, respectively. The highest cycle COP of the current system reached was 0.92 for the condition 20 % additives at 3 LPM hot water flow rate. Owning the feature of great solar energy availability and the long daily sunny hours, solar-powered adsorption cooling systems have promising potential applications in Egypt. A mathematical model of the system performance is also studied.</p></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724002378\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002378","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

活性炭-甲醇系统可在低热(70-100°C)条件下运行。甲醇具有多种优点,包括适当的蒸发潜热、凝固点低以及在温度低于 100°C 时对铜和钢的腐蚀可忽略不计,因此非常可靠,与活性炭配合使用效果良好。通过提高吸附床的热传导率,对热性能进行了实验研究。使用 0 10 % 20 % 和 %30 % 的金属铜粉和活性炭来提高吸附床导热率。制备了一个含有 20% 铜粉的样品,以了解传热特性对冷却效果的改善情况。用两种流速测试了温度梯度,以检查冷却剂的性能和增幅。在这种系统中,太阳能可以在低温消耗的基础上得到有效利用。这项工作旨在对活性炭-甲醇吸附制冷系统的热性能进行实验研究,以研究吸附床热传导率增强的影响。使用 0 %、10 %、20 %、30 % 的金属铜粉与活性炭一起增强床层的导热性,显著提高了系统效率、比冷功率(SCP)和吸附制冷的性能系数。研究发现,质量浓度为 20% 的铜箔是提高系统热性能的最佳配比金属添加剂。此外,还研究了热水流速的影响。结果表明,在活性炭中添加 20% 的金属铜屑可降低蒸发器温度,在加热水流量为 3 和 2 LPM 时,蒸发器温度分别达到 -5 和 -10°C。此外,在热水流速为 2 LPM 和 3 LPM 时,铜屑的添加分别将系统的循环 COP 提高了 49% 和 46%。在 3 LPM 热水流速下,添加 20% 添加剂时,当前系统的最高循环 COP 为 0.92。太阳能吸附冷却系统具有太阳能利用率高、日照时间长的特点,在埃及具有广阔的应用前景。此外,还研究了系统性能的数学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study of the optimal mixing ratio of metallic additives for improving the performance of the solar activated carbon-methanol adsorption refrigeration system

An activated carbon–methanol system can run on low heat (70–100°C). Methanol is dependable and works well with activated carbon because of several benefits, including an appropriate latent heat of evaporation, a low freezing point, and negligible copper corrosion and steel at temperatures below 100 °C. An experimental study of the thermal performance by increasing the adsorption bed thermal conductivity was conducted. Using0 10 % 20 and %30 % of metallic copper powder with activated carbon to improve the bed thermal conductivity. A sample is prepared with 20 % copper powder to find out the improvement of heat transfer characteristics to the cooling effect. The temperature gradient has been tested with two flow rates to examine the coolant performance and increase. Solar energy can be effectively utilized based on low-grade temperature consumption in such systems. This work aims to make an experimental investigation of the thermal performance of an activated carbon-methanol adsorption refrigeration system to study the effect of the enhanced thermal conductivity of the adsorbing bed. Using 0 %, 10 %, 20 %, 30 % of metallic copper powder with activated carbon to enhance the thermal conductivity of the bed, providing a significant improvement in the system efficiency, specific cooling power (SCP), and coefficient of performance of adsorption cooling. It is found that copper filing with a mass concentration of 20 % are appeared the optimal ratio metallic additive to enhance the thermal performance of the system. Moreover, the effect of the hot water flow rate is studied. Results indicated that the addition of 20 % metallic copper filings to the activated carbon lowered the evaporator temperature to reach -5 and -10 °C for heating water flow rates 3 and 2 LPM, respectively. Also, the addition of copper filing enhances the cycle COP of the system by 49 % and 46 % at hot water flow rates of 2and 3 LPM, respectively. The highest cycle COP of the current system reached was 0.92 for the condition 20 % additives at 3 LPM hot water flow rate. Owning the feature of great solar energy availability and the long daily sunny hours, solar-powered adsorption cooling systems have promising potential applications in Egypt. A mathematical model of the system performance is also studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信