论加权伯格曼空间上希尔伯特矩阵算子的规范

IF 1.7 2区 数学 Q1 MATHEMATICS
Jineng Dai
{"title":"论加权伯格曼空间上希尔伯特矩阵算子的规范","authors":"Jineng Dai","doi":"10.1016/j.jfa.2024.110587","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that the norm of the Hilbert matrix operator on weighted Bergman spaces <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> was conjectured by Karapetrović to be <span><math><mfrac><mrow><mi>π</mi></mrow><mrow><mi>sin</mi><mo>⁡</mo><mfrac><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mn>2</mn><mo>)</mo><mi>π</mi></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></mfrac></math></span> when <span><math><mi>α</mi><mo>&gt;</mo><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>&gt;</mo><mi>α</mi><mo>+</mo><mn>2</mn></math></span>. The conjecture has been confirmed by Božin and Karapetrović in the case <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span>. In this paper we prove the conjecture for the cases both <span><math><mi>α</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>47</mn></mrow></mfrac></math></span>. Moreover, we also show that the conjecture is valid when <span><math><mo>−</mo><mn>1</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>0</mn></math></span> and <span><math><mi>p</mi><mo>≥</mo><mn>2</mn><mo>(</mo><mi>α</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the norm of the Hilbert matrix operator on weighted Bergman spaces\",\"authors\":\"Jineng Dai\",\"doi\":\"10.1016/j.jfa.2024.110587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is known that the norm of the Hilbert matrix operator on weighted Bergman spaces <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> was conjectured by Karapetrović to be <span><math><mfrac><mrow><mi>π</mi></mrow><mrow><mi>sin</mi><mo>⁡</mo><mfrac><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mn>2</mn><mo>)</mo><mi>π</mi></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></mfrac></math></span> when <span><math><mi>α</mi><mo>&gt;</mo><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>&gt;</mo><mi>α</mi><mo>+</mo><mn>2</mn></math></span>. The conjecture has been confirmed by Božin and Karapetrović in the case <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span>. In this paper we prove the conjecture for the cases both <span><math><mi>α</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>47</mn></mrow></mfrac></math></span>. Moreover, we also show that the conjecture is valid when <span><math><mo>−</mo><mn>1</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>0</mn></math></span> and <span><math><mi>p</mi><mo>≥</mo><mn>2</mn><mo>(</mo><mi>α</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624002751\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002751","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,卡拉佩特罗维奇曾猜想加权伯格曼空间上的希尔伯特矩阵算子 Aαp 的规范在 α>-1 和 p>α+2 时为 πsin(α+2)πp 。在本文中,我们证明了 α=1 和 0<α≤147 两种情况下的猜想。此外,我们还证明了当-1<α<0 和 p≥2(α+2) 时,猜想是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the norm of the Hilbert matrix operator on weighted Bergman spaces

It is known that the norm of the Hilbert matrix operator on weighted Bergman spaces Aαp was conjectured by Karapetrović to be πsin(α+2)πp when α>1 and p>α+2. The conjecture has been confirmed by Božin and Karapetrović in the case α=0. In this paper we prove the conjecture for the cases both α=1 and 0<α147. Moreover, we also show that the conjecture is valid when 1<α<0 and p2(α+2).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信