{"title":"神经图像重曝","authors":"Xinyu Zhang , Hefei Huang , Xu Jia , Dong Wang , Lihe Zhang , Bolun Zheng , Wei Zhou , Huchuan Lu","doi":"10.1016/j.cviu.2024.104094","DOIUrl":null,"url":null,"abstract":"<div><p>Images and videos often suffer from issues such as motion blur, video discontinuity, or rolling shutter artifacts. Prior studies typically focus on designing specific algorithms to address individual issues. In this paper, we highlight that these issues, albeit differently manifested, fundamentally stem from sub-optimal exposure processes. With this insight, we propose a paradigm termed re-exposure, which resolves the aforementioned issues by performing exposure simulation. Following this paradigm, we design a new architecture, which constructs visual content representation from images and event camera data, and performs exposure simulation in a controllable manner. Experiments demonstrate that, using only a single model, the proposed architecture can effectively address multiple visual issues, including motion blur, video discontinuity, and rolling shutter artifacts, even when these issues co-occur.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural image re-exposure\",\"authors\":\"Xinyu Zhang , Hefei Huang , Xu Jia , Dong Wang , Lihe Zhang , Bolun Zheng , Wei Zhou , Huchuan Lu\",\"doi\":\"10.1016/j.cviu.2024.104094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Images and videos often suffer from issues such as motion blur, video discontinuity, or rolling shutter artifacts. Prior studies typically focus on designing specific algorithms to address individual issues. In this paper, we highlight that these issues, albeit differently manifested, fundamentally stem from sub-optimal exposure processes. With this insight, we propose a paradigm termed re-exposure, which resolves the aforementioned issues by performing exposure simulation. Following this paradigm, we design a new architecture, which constructs visual content representation from images and event camera data, and performs exposure simulation in a controllable manner. Experiments demonstrate that, using only a single model, the proposed architecture can effectively address multiple visual issues, including motion blur, video discontinuity, and rolling shutter artifacts, even when these issues co-occur.</p></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224001759\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224001759","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Images and videos often suffer from issues such as motion blur, video discontinuity, or rolling shutter artifacts. Prior studies typically focus on designing specific algorithms to address individual issues. In this paper, we highlight that these issues, albeit differently manifested, fundamentally stem from sub-optimal exposure processes. With this insight, we propose a paradigm termed re-exposure, which resolves the aforementioned issues by performing exposure simulation. Following this paradigm, we design a new architecture, which constructs visual content representation from images and event camera data, and performs exposure simulation in a controllable manner. Experiments demonstrate that, using only a single model, the proposed architecture can effectively address multiple visual issues, including motion blur, video discontinuity, and rolling shutter artifacts, even when these issues co-occur.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems