λ-差分前李代数的同调、非阿贝尔扩展和韦尔斯精确序列

IF 1.6 3区 数学 Q1 MATHEMATICS
Qinxiu Sun, QianWen Zhu
{"title":"λ-差分前李代数的同调、非阿贝尔扩展和韦尔斯精确序列","authors":"Qinxiu Sun,&nbsp;QianWen Zhu","doi":"10.1016/j.geomphys.2024.105280","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of the present paper is to study cohomologies and non-abelian extensions of <em>λ</em>-differential pre-Lie algebras. First, we consider representations and cohomologies of <em>λ</em>-differential pre-Lie algebras. Next, we investigate non-abelian extensions and classify the non-abelian extensions in terms of non-abelian cohomology groups. Furthermore, we address the inducibility of a pair of automorphisms on non-abelian extensions and develop the Wells exact sequences in the context of <em>λ</em>-differential pre-Lie algebras. Finally, we discuss these results in the case of abelian extensions of <em>λ</em>-differential pre-Lie algebras.</p></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohomologies, non-abelian extensions and Wells exact sequences of λ-differential pre-Lie algebras\",\"authors\":\"Qinxiu Sun,&nbsp;QianWen Zhu\",\"doi\":\"10.1016/j.geomphys.2024.105280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of the present paper is to study cohomologies and non-abelian extensions of <em>λ</em>-differential pre-Lie algebras. First, we consider representations and cohomologies of <em>λ</em>-differential pre-Lie algebras. Next, we investigate non-abelian extensions and classify the non-abelian extensions in terms of non-abelian cohomology groups. Furthermore, we address the inducibility of a pair of automorphisms on non-abelian extensions and develop the Wells exact sequences in the context of <em>λ</em>-differential pre-Lie algebras. Finally, we discuss these results in the case of abelian extensions of <em>λ</em>-differential pre-Lie algebras.</p></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024001815\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024001815","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究λ-差分前李代数的同调与非阿贝尔扩展。首先,我们考虑 λ 微分前李代数的表示和同调。接下来,我们研究非标注扩展,并根据非标注同调群对非标注扩展进行分类。此外,我们还讨论了非阿贝尔扩展上的一对自动态的可诱导性,并在λ差分前李代数的背景下发展了威尔斯精确序列。最后,我们讨论了 λ 差分前李代数的无阿贝尔扩展的这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohomologies, non-abelian extensions and Wells exact sequences of λ-differential pre-Lie algebras

The purpose of the present paper is to study cohomologies and non-abelian extensions of λ-differential pre-Lie algebras. First, we consider representations and cohomologies of λ-differential pre-Lie algebras. Next, we investigate non-abelian extensions and classify the non-abelian extensions in terms of non-abelian cohomology groups. Furthermore, we address the inducibility of a pair of automorphisms on non-abelian extensions and develop the Wells exact sequences in the context of λ-differential pre-Lie algebras. Finally, we discuss these results in the case of abelian extensions of λ-differential pre-Lie algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信