{"title":"了解镍基超合金车削过程中粘着磨损诱发的刀具切削刃微观结构和变形机制","authors":"","doi":"10.1016/j.wear.2024.205519","DOIUrl":null,"url":null,"abstract":"<div><p>Nickel-based superalloy has great potential in the aerospace industry as key components. However, difficult-to-machine characteristics have further limited its application. Thermal-barrier coatings of the titanium-based family on carbide tools offer exceptional performance in cutting superalloys, combining high-temperature stability and remarkable toughness. This work primarily concentrates on understanding cutting-edge microstructure and deformation induced by tool adhesive wear in the turning of nickel-based superalloys with experiment and modelling. The dominant tool wear mechanisms are revealed to be adhesive wear and abrasive wear by SEM/EDS. The microstructure of the cutting-edge interface is qualitatively and quantitatively investigated by SEM/EDS and EBSD. The adhesive layer thickness at cutting edge is about 10–30 μm. The GND density of WC grains at cutting edge is 15-20 × 10<sup>14</sup>/m. The nanomechanics properties of the tool wear interface were quantitatively evaluated by nanoindentation. The average hardness of WC and Ni-superalloy at cutting-edge interface is evaluated to be 15–19 GPa and 6.2–6.5 GPa, respectively. Further, the underlying deformation mechanisms induced by tool wear behaviours are revealed through the transient heat conduction model and cutting-edge stress distribution model. This research offers a framework and mechanism for the cutting tool wear surface/interface characteristics targeted to the difficult-to-cut superalloy materials.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding tool cutting-edge microstructure and deformation mechanism induced by adhesive wear in the turning of nickel-based superalloys\",\"authors\":\"\",\"doi\":\"10.1016/j.wear.2024.205519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nickel-based superalloy has great potential in the aerospace industry as key components. However, difficult-to-machine characteristics have further limited its application. Thermal-barrier coatings of the titanium-based family on carbide tools offer exceptional performance in cutting superalloys, combining high-temperature stability and remarkable toughness. This work primarily concentrates on understanding cutting-edge microstructure and deformation induced by tool adhesive wear in the turning of nickel-based superalloys with experiment and modelling. The dominant tool wear mechanisms are revealed to be adhesive wear and abrasive wear by SEM/EDS. The microstructure of the cutting-edge interface is qualitatively and quantitatively investigated by SEM/EDS and EBSD. The adhesive layer thickness at cutting edge is about 10–30 μm. The GND density of WC grains at cutting edge is 15-20 × 10<sup>14</sup>/m. The nanomechanics properties of the tool wear interface were quantitatively evaluated by nanoindentation. The average hardness of WC and Ni-superalloy at cutting-edge interface is evaluated to be 15–19 GPa and 6.2–6.5 GPa, respectively. Further, the underlying deformation mechanisms induced by tool wear behaviours are revealed through the transient heat conduction model and cutting-edge stress distribution model. This research offers a framework and mechanism for the cutting tool wear surface/interface characteristics targeted to the difficult-to-cut superalloy materials.</p></div>\",\"PeriodicalId\":23970,\"journal\":{\"name\":\"Wear\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043164824002849\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824002849","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Understanding tool cutting-edge microstructure and deformation mechanism induced by adhesive wear in the turning of nickel-based superalloys
Nickel-based superalloy has great potential in the aerospace industry as key components. However, difficult-to-machine characteristics have further limited its application. Thermal-barrier coatings of the titanium-based family on carbide tools offer exceptional performance in cutting superalloys, combining high-temperature stability and remarkable toughness. This work primarily concentrates on understanding cutting-edge microstructure and deformation induced by tool adhesive wear in the turning of nickel-based superalloys with experiment and modelling. The dominant tool wear mechanisms are revealed to be adhesive wear and abrasive wear by SEM/EDS. The microstructure of the cutting-edge interface is qualitatively and quantitatively investigated by SEM/EDS and EBSD. The adhesive layer thickness at cutting edge is about 10–30 μm. The GND density of WC grains at cutting edge is 15-20 × 1014/m. The nanomechanics properties of the tool wear interface were quantitatively evaluated by nanoindentation. The average hardness of WC and Ni-superalloy at cutting-edge interface is evaluated to be 15–19 GPa and 6.2–6.5 GPa, respectively. Further, the underlying deformation mechanisms induced by tool wear behaviours are revealed through the transient heat conduction model and cutting-edge stress distribution model. This research offers a framework and mechanism for the cutting tool wear surface/interface characteristics targeted to the difficult-to-cut superalloy materials.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.