评估偏远社区电气化可再生能源混合微电网的可行性和质量性能

IF 7.1 Q1 ENERGY & FUELS
{"title":"评估偏远社区电气化可再生能源混合微电网的可行性和质量性能","authors":"","doi":"10.1016/j.ecmx.2024.100674","DOIUrl":null,"url":null,"abstract":"<div><p>Access to reliable energy is crucial for development, yet many rural areas in southern Bangladesh suffer from electricity shortages, impeding essential services and hindering social and economic progress. This paper proposes integrating renewable energy-based microgrids to provide sustainable and reliable electricity, thereby improving living conditions and boosting economic growth. A detailed survey in Ruma, Bandarban, was conducted for load estimation. Simulation results for on-grid and off-grid microgrids are obtained using HOMER Pro and PVsyst software. The off-grid system includes 21.8 kW of PV, 15 kW of hydro, and 222 kWh of battery storage, while the on-grid system includes a 200 kW PV system and a 15 kW hydro turbine. The levelized cost of energy (LCOE) is 0.15 USD/kWh off-grid and 0.03 USD/kWh on-grid. The on-grid system shows economic sustainability with a 6.8-year break-even point, 13 % IRR, and 8.7 % ROI. Environmental analysis shows significant greenhouse gas reductions, with CO<sub>2</sub> emissions decreasing from 227,778 kg/year to 199,016 kg/year. Additionally, a sensitivity analysis is conducted, which underscores the resilience of the proposed hybrid microgrid system to weather variations and cost fluctuations. This paper provides a comprehensive foundation for policymakers to consider renewable microgrids as a solution for rural electrification in southern Bangladesh, utilizing solar and hydropower resources.</p></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590174524001521/pdfft?md5=dc75acc97262b0fd9285a5209739d3f5&pid=1-s2.0-S2590174524001521-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessing the feasibility and quality performance of a renewable Energy-Based hybrid microgrid for electrification of remote communities\",\"authors\":\"\",\"doi\":\"10.1016/j.ecmx.2024.100674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Access to reliable energy is crucial for development, yet many rural areas in southern Bangladesh suffer from electricity shortages, impeding essential services and hindering social and economic progress. This paper proposes integrating renewable energy-based microgrids to provide sustainable and reliable electricity, thereby improving living conditions and boosting economic growth. A detailed survey in Ruma, Bandarban, was conducted for load estimation. Simulation results for on-grid and off-grid microgrids are obtained using HOMER Pro and PVsyst software. The off-grid system includes 21.8 kW of PV, 15 kW of hydro, and 222 kWh of battery storage, while the on-grid system includes a 200 kW PV system and a 15 kW hydro turbine. The levelized cost of energy (LCOE) is 0.15 USD/kWh off-grid and 0.03 USD/kWh on-grid. The on-grid system shows economic sustainability with a 6.8-year break-even point, 13 % IRR, and 8.7 % ROI. Environmental analysis shows significant greenhouse gas reductions, with CO<sub>2</sub> emissions decreasing from 227,778 kg/year to 199,016 kg/year. Additionally, a sensitivity analysis is conducted, which underscores the resilience of the proposed hybrid microgrid system to weather variations and cost fluctuations. This paper provides a comprehensive foundation for policymakers to consider renewable microgrids as a solution for rural electrification in southern Bangladesh, utilizing solar and hydropower resources.</p></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001521/pdfft?md5=dc75acc97262b0fd9285a5209739d3f5&pid=1-s2.0-S2590174524001521-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524001521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

获得可靠的能源对发展至关重要,然而孟加拉国南部的许多农村地区电力短缺,妨碍了基本服务,阻碍了社会和经济进步。本文建议整合以可再生能源为基础的微电网,提供可持续的可靠电力,从而改善生活条件,促进经济增长。在班达尔班的鲁马进行了详细调查,以估算负荷。使用 HOMER Pro 和 PVsyst 软件获得了并网和离网微电网的模拟结果。离网系统包括 21.8 千瓦的光伏发电系统、15 千瓦的水力发电系统和 222 千瓦时的电池储能系统,而并网系统包括一个 200 千瓦的光伏发电系统和一个 15 千瓦的水轮机。离网系统的平准化能源成本(LCOE)为 0.15 美元/千瓦时,并网系统为 0.03 美元/千瓦时。并网系统具有经济可持续性,盈亏平衡点为 6.8 年,内部收益率为 13%,投资回报率为 8.7%。环境分析表明,温室气体排放量大幅减少,二氧化碳排放量从 227,778 千克/年降至 199,016 千克/年。此外,还进行了敏感性分析,强调了拟议的混合微电网系统对天气变化和成本波动的适应能力。本文为政策制定者提供了一个全面的基础,使他们能够利用太阳能和水电资源,考虑将可再生微电网作为孟加拉国南部农村电气化的一个解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the feasibility and quality performance of a renewable Energy-Based hybrid microgrid for electrification of remote communities

Access to reliable energy is crucial for development, yet many rural areas in southern Bangladesh suffer from electricity shortages, impeding essential services and hindering social and economic progress. This paper proposes integrating renewable energy-based microgrids to provide sustainable and reliable electricity, thereby improving living conditions and boosting economic growth. A detailed survey in Ruma, Bandarban, was conducted for load estimation. Simulation results for on-grid and off-grid microgrids are obtained using HOMER Pro and PVsyst software. The off-grid system includes 21.8 kW of PV, 15 kW of hydro, and 222 kWh of battery storage, while the on-grid system includes a 200 kW PV system and a 15 kW hydro turbine. The levelized cost of energy (LCOE) is 0.15 USD/kWh off-grid and 0.03 USD/kWh on-grid. The on-grid system shows economic sustainability with a 6.8-year break-even point, 13 % IRR, and 8.7 % ROI. Environmental analysis shows significant greenhouse gas reductions, with CO2 emissions decreasing from 227,778 kg/year to 199,016 kg/year. Additionally, a sensitivity analysis is conducted, which underscores the resilience of the proposed hybrid microgrid system to weather variations and cost fluctuations. This paper provides a comprehensive foundation for policymakers to consider renewable microgrids as a solution for rural electrification in southern Bangladesh, utilizing solar and hydropower resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信