用于高性能锂离子电池的分层多孔微柱 In2O3@C@Ti3C2TX 复合负极

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
{"title":"用于高性能锂离子电池的分层多孔微柱 In2O3@C@Ti3C2TX 复合负极","authors":"","doi":"10.1016/j.electacta.2024.144759","DOIUrl":null,"url":null,"abstract":"<div><p>In<sub>2</sub>O<sub>3</sub>, employed as an anode, demonstrates exceptional capacity in lithium-ion batteries (LIBs). Nonetheless, its propensity for significant volume expansion results in internal fracturing and reorganization. Two-dimensional double transition metal carbides and nitrides (MXenes), characterized by unique out-of-plane metal atom ordering, exhibit promising electrical properties due to their chemical versatility and intricate structure. However, MXenes' tendency to aggregate or stack into lamellar structures impedes their practical energy storage application. To address these issues, a hierarchical porous microrods In<sub>2</sub>O<sub>3</sub>@C@Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> (HPMR-In<sub>2</sub>O<sub>3</sub>@C@Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>) composite anode material was synthesized through electrostatic self-assembly of MIL-68 (In) and Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>, followed by carbonization. This synthesis produced continuous one-dimensional microrods with hierarchical porous channels in HPMR-In<sub>2</sub>O<sub>3</sub>@C, offering a substantial specific surface area, numerous Li<sup>+</sup> storage sites, and enhanced charge transfer rates. Moreover, the interlayer space within Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> acts as an electrolyte reservoir, facilitating comprehensive electrochemical reactions and accommodating volume changes during charge-discharge cycles. Consequently, the HPMR-In<sub>2</sub>O<sub>3</sub>@C@Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> anode exhibited remarkable properties, including a high initial discharge specific capacity of 1406 mAh g<sup>-1</sup> at 0.1 C, outstanding cycling performance, and superior rate performance. This research presents a promising direction for the advancement of high-performance anode materials for lithium-ion batteries.</p></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical porous microrod In2O3@C@Ti3C2TX composite anode for high-performance lithium-ion batteries\",\"authors\":\"\",\"doi\":\"10.1016/j.electacta.2024.144759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In<sub>2</sub>O<sub>3</sub>, employed as an anode, demonstrates exceptional capacity in lithium-ion batteries (LIBs). Nonetheless, its propensity for significant volume expansion results in internal fracturing and reorganization. Two-dimensional double transition metal carbides and nitrides (MXenes), characterized by unique out-of-plane metal atom ordering, exhibit promising electrical properties due to their chemical versatility and intricate structure. However, MXenes' tendency to aggregate or stack into lamellar structures impedes their practical energy storage application. To address these issues, a hierarchical porous microrods In<sub>2</sub>O<sub>3</sub>@C@Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> (HPMR-In<sub>2</sub>O<sub>3</sub>@C@Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>) composite anode material was synthesized through electrostatic self-assembly of MIL-68 (In) and Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub>, followed by carbonization. This synthesis produced continuous one-dimensional microrods with hierarchical porous channels in HPMR-In<sub>2</sub>O<sub>3</sub>@C, offering a substantial specific surface area, numerous Li<sup>+</sup> storage sites, and enhanced charge transfer rates. Moreover, the interlayer space within Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> acts as an electrolyte reservoir, facilitating comprehensive electrochemical reactions and accommodating volume changes during charge-discharge cycles. Consequently, the HPMR-In<sub>2</sub>O<sub>3</sub>@C@Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> anode exhibited remarkable properties, including a high initial discharge specific capacity of 1406 mAh g<sup>-1</sup> at 0.1 C, outstanding cycling performance, and superior rate performance. This research presents a promising direction for the advancement of high-performance anode materials for lithium-ion batteries.</p></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001346862400999X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001346862400999X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

In2O3 用作负极,在锂离子电池 (LIB) 中显示出非凡的容量。然而,其显著的体积膨胀倾向会导致内部断裂和重组。二维双过渡金属碳化物和氮化物(MXenes)以独特的平面外金属原子有序为特征,因其化学性质多变和结构复杂而表现出良好的电气性能。然而,MXenes 容易聚集或堆积成片状结构,这阻碍了它们的实际储能应用。为了解决这些问题,我们通过 MIL-68 (In) 和 Ti3C2TX 的静电自组装,然后进行碳化,合成了一种分层多孔微晶 In2O3@C@Ti3C2TX(HPMR-In2O3@C@Ti3C2TX)复合阳极材料。这种合成方法在 HPMR-In2O3@C 中产生了具有分层多孔通道的连续一维微晶,提供了很大的比表面积、大量的 Li+ 储存位点,并提高了电荷传输速率。此外,Ti3C2TX 的层间空间可作为电解质储层,促进全面的电化学反应,并适应充放电循环过程中的体积变化。因此,HPMR-In2O3@C@Ti3C2TX 阳极表现出卓越的性能,包括在 0.1 C 条件下达到 1406 mAh g-1 的高初始放电比容量、出色的循环性能和优异的速率性能。这项研究为高性能锂离子电池负极材料的发展指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hierarchical porous microrod In2O3@C@Ti3C2TX composite anode for high-performance lithium-ion batteries

Hierarchical porous microrod In2O3@C@Ti3C2TX composite anode for high-performance lithium-ion batteries

In2O3, employed as an anode, demonstrates exceptional capacity in lithium-ion batteries (LIBs). Nonetheless, its propensity for significant volume expansion results in internal fracturing and reorganization. Two-dimensional double transition metal carbides and nitrides (MXenes), characterized by unique out-of-plane metal atom ordering, exhibit promising electrical properties due to their chemical versatility and intricate structure. However, MXenes' tendency to aggregate or stack into lamellar structures impedes their practical energy storage application. To address these issues, a hierarchical porous microrods In2O3@C@Ti3C2TX (HPMR-In2O3@C@Ti3C2TX) composite anode material was synthesized through electrostatic self-assembly of MIL-68 (In) and Ti3C2TX, followed by carbonization. This synthesis produced continuous one-dimensional microrods with hierarchical porous channels in HPMR-In2O3@C, offering a substantial specific surface area, numerous Li+ storage sites, and enhanced charge transfer rates. Moreover, the interlayer space within Ti3C2TX acts as an electrolyte reservoir, facilitating comprehensive electrochemical reactions and accommodating volume changes during charge-discharge cycles. Consequently, the HPMR-In2O3@C@Ti3C2TX anode exhibited remarkable properties, including a high initial discharge specific capacity of 1406 mAh g-1 at 0.1 C, outstanding cycling performance, and superior rate performance. This research presents a promising direction for the advancement of high-performance anode materials for lithium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信