{"title":"宫颈阴道微生物组、高危 HPV 感染与宫颈癌:机制与治疗潜力","authors":"Roujie Huang , Zimo Liu , Tianshu Sun , Lan Zhu","doi":"10.1016/j.micres.2024.127857","DOIUrl":null,"url":null,"abstract":"<div><p>The microbiota in the female genital tract is an intricate assembly of diverse aerobic, anaerobic, and microaerophilic microorganisms, which share the space within the reproductive tract and engage in complex interactions. Microbiome dysbiosis may disrupt the symbiotic relationship between the host and microorganisms and play a pivotal role in the pathogenesis of various diseases, including its involvement in the establishment of human papillomavirus (HPV)-associated cervical cancer (CC). Interventions to restore microbiota homeostasis (e.g., probiotics) and bacterial-vector HPV therapeutic vaccines have been reported to be potentially effective in clearing HPV infection and ameliorating cytological abnormalities. In this review, we place emphasis on elucidating the alterations within the cervical–vaginal microbiota as well as the intratumoral microbiota in the context of high-risk HPV (HR-HPV) infection and its subsequent progression to cervical intraepithelial neoplasia/CC. Furthermore, we explore the mechanisms by which these microbial communities exert potential pathogenic or protective effects, including modulating genital inflammation and immune responses, affecting HR-HPV oncogene expression and oncoprotein production, regulating oxidative stress and deoxyribonucleic acid (DNA) damage, and inducing metabolic rewiring. Lastly, we summarize the latest evidence in human trials regarding the efficacy of probiotics, prebiotics and probiotic-vector HPV therapeutic vaccines. This review aims to foster a deeper understanding of the role of the microbiota in HR-HPV infection-related cervix cancer development, and further provide a theoretical basis for the development of preventive and therapeutic strategies based on microbial modulation.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"287 ","pages":"Article 127857"},"PeriodicalIF":6.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944501324002581/pdfft?md5=512d9986f5f6bdf21960bfbef1a95b3c&pid=1-s2.0-S0944501324002581-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cervicovaginal microbiome, high-risk HPV infection and cervical cancer: Mechanisms and therapeutic potential\",\"authors\":\"Roujie Huang , Zimo Liu , Tianshu Sun , Lan Zhu\",\"doi\":\"10.1016/j.micres.2024.127857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The microbiota in the female genital tract is an intricate assembly of diverse aerobic, anaerobic, and microaerophilic microorganisms, which share the space within the reproductive tract and engage in complex interactions. Microbiome dysbiosis may disrupt the symbiotic relationship between the host and microorganisms and play a pivotal role in the pathogenesis of various diseases, including its involvement in the establishment of human papillomavirus (HPV)-associated cervical cancer (CC). Interventions to restore microbiota homeostasis (e.g., probiotics) and bacterial-vector HPV therapeutic vaccines have been reported to be potentially effective in clearing HPV infection and ameliorating cytological abnormalities. In this review, we place emphasis on elucidating the alterations within the cervical–vaginal microbiota as well as the intratumoral microbiota in the context of high-risk HPV (HR-HPV) infection and its subsequent progression to cervical intraepithelial neoplasia/CC. Furthermore, we explore the mechanisms by which these microbial communities exert potential pathogenic or protective effects, including modulating genital inflammation and immune responses, affecting HR-HPV oncogene expression and oncoprotein production, regulating oxidative stress and deoxyribonucleic acid (DNA) damage, and inducing metabolic rewiring. Lastly, we summarize the latest evidence in human trials regarding the efficacy of probiotics, prebiotics and probiotic-vector HPV therapeutic vaccines. This review aims to foster a deeper understanding of the role of the microbiota in HR-HPV infection-related cervix cancer development, and further provide a theoretical basis for the development of preventive and therapeutic strategies based on microbial modulation.</p></div>\",\"PeriodicalId\":18564,\"journal\":{\"name\":\"Microbiological research\",\"volume\":\"287 \",\"pages\":\"Article 127857\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0944501324002581/pdfft?md5=512d9986f5f6bdf21960bfbef1a95b3c&pid=1-s2.0-S0944501324002581-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiological research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944501324002581\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944501324002581","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Cervicovaginal microbiome, high-risk HPV infection and cervical cancer: Mechanisms and therapeutic potential
The microbiota in the female genital tract is an intricate assembly of diverse aerobic, anaerobic, and microaerophilic microorganisms, which share the space within the reproductive tract and engage in complex interactions. Microbiome dysbiosis may disrupt the symbiotic relationship between the host and microorganisms and play a pivotal role in the pathogenesis of various diseases, including its involvement in the establishment of human papillomavirus (HPV)-associated cervical cancer (CC). Interventions to restore microbiota homeostasis (e.g., probiotics) and bacterial-vector HPV therapeutic vaccines have been reported to be potentially effective in clearing HPV infection and ameliorating cytological abnormalities. In this review, we place emphasis on elucidating the alterations within the cervical–vaginal microbiota as well as the intratumoral microbiota in the context of high-risk HPV (HR-HPV) infection and its subsequent progression to cervical intraepithelial neoplasia/CC. Furthermore, we explore the mechanisms by which these microbial communities exert potential pathogenic or protective effects, including modulating genital inflammation and immune responses, affecting HR-HPV oncogene expression and oncoprotein production, regulating oxidative stress and deoxyribonucleic acid (DNA) damage, and inducing metabolic rewiring. Lastly, we summarize the latest evidence in human trials regarding the efficacy of probiotics, prebiotics and probiotic-vector HPV therapeutic vaccines. This review aims to foster a deeper understanding of the role of the microbiota in HR-HPV infection-related cervix cancer development, and further provide a theoretical basis for the development of preventive and therapeutic strategies based on microbial modulation.
期刊介绍:
Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.