{"title":"曲线守恒配位方案上同调束的扩展群","authors":"Andreas Krug","doi":"10.1016/j.matpur.2024.103600","DOIUrl":null,"url":null,"abstract":"<div><p>We prove formulas for the cohomology and the extension groups of tautological bundles on punctual Quot schemes over complex smooth projective curves. As a corollary, we show that the tautological bundle determines the isomorphism class of the original vector bundle on the curve. We also give a vanishing result for the push-forward along the Quot–Chow morphism of tensor and wedge products of duals of tautological bundles.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000989/pdfft?md5=886e30cbdfb7383e909e55abb30ca80a&pid=1-s2.0-S0021782424000989-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Extension groups of tautological bundles on punctual Quot schemes of curves\",\"authors\":\"Andreas Krug\",\"doi\":\"10.1016/j.matpur.2024.103600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove formulas for the cohomology and the extension groups of tautological bundles on punctual Quot schemes over complex smooth projective curves. As a corollary, we show that the tautological bundle determines the isomorphism class of the original vector bundle on the curve. We also give a vanishing result for the push-forward along the Quot–Chow morphism of tensor and wedge products of duals of tautological bundles.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000989/pdfft?md5=886e30cbdfb7383e909e55abb30ca80a&pid=1-s2.0-S0021782424000989-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Extension groups of tautological bundles on punctual Quot schemes of curves
We prove formulas for the cohomology and the extension groups of tautological bundles on punctual Quot schemes over complex smooth projective curves. As a corollary, we show that the tautological bundle determines the isomorphism class of the original vector bundle on the curve. We also give a vanishing result for the push-forward along the Quot–Chow morphism of tensor and wedge products of duals of tautological bundles.