基于图像到图像平移的人脸照片去网格化研究

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Abdul Jabbar , Muhammad Assam , Muhammad Arslan , Madiha Bukhsh , Muhammad Shoib Amin , Yazeed Yasin Ghadi , Nisreen Innab , Masoud Alajmi , Mamyrbayev Orken , Salgozha Indira , Hend Khalid Alkahtan
{"title":"基于图像到图像平移的人脸照片去网格化研究","authors":"Abdul Jabbar ,&nbsp;Muhammad Assam ,&nbsp;Muhammad Arslan ,&nbsp;Madiha Bukhsh ,&nbsp;Muhammad Shoib Amin ,&nbsp;Yazeed Yasin Ghadi ,&nbsp;Nisreen Innab ,&nbsp;Masoud Alajmi ,&nbsp;Mamyrbayev Orken ,&nbsp;Salgozha Indira ,&nbsp;Hend Khalid Alkahtan","doi":"10.1016/j.cviu.2024.104080","DOIUrl":null,"url":null,"abstract":"<div><p>Most of the existing face photo de-meshing methods have accomplished promising results; there are certain quality problems with these methods like the inpainted regions would appear blurry and unpleasant boundaries becoming visible. Such artifacts cause generated face photos unreal. Therefore, we propose an effective image-to-image translation framework called Face De-meshing Using Generative Adversarial Networks (De-mesh GANs). The De-mesh GANs is a two-stage model: (i) binary mask generating module, is a three convolution layers-based encoder–decoder network architecture that automatically generates a binary mask for the meshed region, and (ii) face photo de-meshing module, is a GANs-based network that eliminates the mesh mask and synthesizes the meshed area. An arrangement of careful losses (reconstruction loss, adversarial loss, and perceptual loss) is used to reassure the better quality of the de-mesh face photos. To facilitate the training of the proposed model, we have designed a dataset of clean/corrupted photo pairs using the CelebA dataset. Qualitative and quantitative evaluations of the De-mesh GANs on real-world corrupted face photo images show better performance than the previously proposed face photo de-meshing models. Furthermore, we also offer the ablation study for performance assessment of the additional network i.e., perceptual network.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1077314224001619/pdfft?md5=69edb9b36e9f2ed6358c7a01f72da000&pid=1-s2.0-S1077314224001619-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Image-to-image translation based face photo de-meshing using GANs\",\"authors\":\"Abdul Jabbar ,&nbsp;Muhammad Assam ,&nbsp;Muhammad Arslan ,&nbsp;Madiha Bukhsh ,&nbsp;Muhammad Shoib Amin ,&nbsp;Yazeed Yasin Ghadi ,&nbsp;Nisreen Innab ,&nbsp;Masoud Alajmi ,&nbsp;Mamyrbayev Orken ,&nbsp;Salgozha Indira ,&nbsp;Hend Khalid Alkahtan\",\"doi\":\"10.1016/j.cviu.2024.104080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most of the existing face photo de-meshing methods have accomplished promising results; there are certain quality problems with these methods like the inpainted regions would appear blurry and unpleasant boundaries becoming visible. Such artifacts cause generated face photos unreal. Therefore, we propose an effective image-to-image translation framework called Face De-meshing Using Generative Adversarial Networks (De-mesh GANs). The De-mesh GANs is a two-stage model: (i) binary mask generating module, is a three convolution layers-based encoder–decoder network architecture that automatically generates a binary mask for the meshed region, and (ii) face photo de-meshing module, is a GANs-based network that eliminates the mesh mask and synthesizes the meshed area. An arrangement of careful losses (reconstruction loss, adversarial loss, and perceptual loss) is used to reassure the better quality of the de-mesh face photos. To facilitate the training of the proposed model, we have designed a dataset of clean/corrupted photo pairs using the CelebA dataset. Qualitative and quantitative evaluations of the De-mesh GANs on real-world corrupted face photo images show better performance than the previously proposed face photo de-meshing models. Furthermore, we also offer the ablation study for performance assessment of the additional network i.e., perceptual network.</p></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1077314224001619/pdfft?md5=69edb9b36e9f2ed6358c7a01f72da000&pid=1-s2.0-S1077314224001619-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224001619\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224001619","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

大多数现有的人脸照片去网格化方法都取得了可喜的成果,但这些方法也存在一定的质量问题,如涂抹区域会显得模糊,令人不快的边界变得清晰可见。这些伪影会导致生成的人脸照片不真实。因此,我们提出了一种有效的图像到图像转换框架,称为 "使用生成对抗网络的人脸去网格化方法(De-mesh GANs)"。去网格化 GANs 是一个两阶段模型:(i) 二进制掩码生成模块,是一个基于三个卷积层的编码器-解码器网络架构,可自动生成网格区域的二进制掩码;(ii) 人脸照片去网格化模块,是一个基于 GANs 的网络,可消除网格掩码并合成网格区域。为了保证去网格化人脸照片的质量,采用了谨慎损失(重建损失、对抗损失和感知损失)的安排。为了便于训练所提出的模型,我们使用 CelebA 数据集设计了一个干净/损坏照片对数据集。对真实世界中损坏的人脸照片图像进行的定性和定量评估表明,去网格 GAN 的性能优于之前提出的人脸照片去网格模型。此外,我们还提供了用于评估附加网络(即感知网络)性能的消融研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image-to-image translation based face photo de-meshing using GANs

Most of the existing face photo de-meshing methods have accomplished promising results; there are certain quality problems with these methods like the inpainted regions would appear blurry and unpleasant boundaries becoming visible. Such artifacts cause generated face photos unreal. Therefore, we propose an effective image-to-image translation framework called Face De-meshing Using Generative Adversarial Networks (De-mesh GANs). The De-mesh GANs is a two-stage model: (i) binary mask generating module, is a three convolution layers-based encoder–decoder network architecture that automatically generates a binary mask for the meshed region, and (ii) face photo de-meshing module, is a GANs-based network that eliminates the mesh mask and synthesizes the meshed area. An arrangement of careful losses (reconstruction loss, adversarial loss, and perceptual loss) is used to reassure the better quality of the de-mesh face photos. To facilitate the training of the proposed model, we have designed a dataset of clean/corrupted photo pairs using the CelebA dataset. Qualitative and quantitative evaluations of the De-mesh GANs on real-world corrupted face photo images show better performance than the previously proposed face photo de-meshing models. Furthermore, we also offer the ablation study for performance assessment of the additional network i.e., perceptual network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信