{"title":"基于 YOLO 的无人机航空图像轻量级物体检测网络","authors":"Yanshan Li;Jiarong Wang;Kunhua Zhang;Jiawei Yi;Miaomiao Wei;Lirong Zheng;Weixin Xie","doi":"10.23919/cje.2022.00.300","DOIUrl":null,"url":null,"abstract":"Existing high-precision object detection algorithms for UAV (unmanned aerial vehicle) aerial images often have a large number of parameters and heavy weight, which makes it difficult to be applied to mobile devices. We propose three YOLO-based lightweight object detection networks for UAVs, named YOLO-L, YOLO-S, and YOLO-M, respectively. In YOLO-L, we adopt a deconvolution approach to explore suitable upsampling rules during training to improve the detection accuracy. The convolution-batch normalization-SiLU activation function (CBS) structure is replaced with Ghost CBS to reduce the number of parameters and weight, meanwhile Maxpool maximum pooling operation is proposed to replace the CBS structure to avoid generating parameters and weight. YOLO-S greatly reduces the weight of the network by directly introducing CSPGhostNeck residual structures, so that the parameters and weight are respectively decreased by about 15% at the expense of 2.4% mAP. And YOLO-M adopts the CSPGhostNeck residual structure and deconvolution to reduce parameters by 5.6% and weight by 5.7%, while mAP only by 1.8%. The results show that the three lightweight detection networks proposed in this paper have good performance in UAV aerial image object detection task.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 4","pages":"997-1009"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10606207","citationCount":"0","resultStr":"{\"title\":\"Lightweight Object Detection Networks for UAV Aerial Images Based on YOLO\",\"authors\":\"Yanshan Li;Jiarong Wang;Kunhua Zhang;Jiawei Yi;Miaomiao Wei;Lirong Zheng;Weixin Xie\",\"doi\":\"10.23919/cje.2022.00.300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing high-precision object detection algorithms for UAV (unmanned aerial vehicle) aerial images often have a large number of parameters and heavy weight, which makes it difficult to be applied to mobile devices. We propose three YOLO-based lightweight object detection networks for UAVs, named YOLO-L, YOLO-S, and YOLO-M, respectively. In YOLO-L, we adopt a deconvolution approach to explore suitable upsampling rules during training to improve the detection accuracy. The convolution-batch normalization-SiLU activation function (CBS) structure is replaced with Ghost CBS to reduce the number of parameters and weight, meanwhile Maxpool maximum pooling operation is proposed to replace the CBS structure to avoid generating parameters and weight. YOLO-S greatly reduces the weight of the network by directly introducing CSPGhostNeck residual structures, so that the parameters and weight are respectively decreased by about 15% at the expense of 2.4% mAP. And YOLO-M adopts the CSPGhostNeck residual structure and deconvolution to reduce parameters by 5.6% and weight by 5.7%, while mAP only by 1.8%. The results show that the three lightweight detection networks proposed in this paper have good performance in UAV aerial image object detection task.\",\"PeriodicalId\":50701,\"journal\":{\"name\":\"Chinese Journal of Electronics\",\"volume\":\"33 4\",\"pages\":\"997-1009\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10606207\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10606207/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10606207/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Lightweight Object Detection Networks for UAV Aerial Images Based on YOLO
Existing high-precision object detection algorithms for UAV (unmanned aerial vehicle) aerial images often have a large number of parameters and heavy weight, which makes it difficult to be applied to mobile devices. We propose three YOLO-based lightweight object detection networks for UAVs, named YOLO-L, YOLO-S, and YOLO-M, respectively. In YOLO-L, we adopt a deconvolution approach to explore suitable upsampling rules during training to improve the detection accuracy. The convolution-batch normalization-SiLU activation function (CBS) structure is replaced with Ghost CBS to reduce the number of parameters and weight, meanwhile Maxpool maximum pooling operation is proposed to replace the CBS structure to avoid generating parameters and weight. YOLO-S greatly reduces the weight of the network by directly introducing CSPGhostNeck residual structures, so that the parameters and weight are respectively decreased by about 15% at the expense of 2.4% mAP. And YOLO-M adopts the CSPGhostNeck residual structure and deconvolution to reduce parameters by 5.6% and weight by 5.7%, while mAP only by 1.8%. The results show that the three lightweight detection networks proposed in this paper have good performance in UAV aerial image object detection task.
期刊介绍:
CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.