带脉冲的离散时随机系统的几乎确定的指数稳定性和随机稳定性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ting Cai , Pei Cheng , Xing Liu , Mingang Hua
{"title":"带脉冲的离散时随机系统的几乎确定的指数稳定性和随机稳定性","authors":"Ting Cai ,&nbsp;Pei Cheng ,&nbsp;Xing Liu ,&nbsp;Mingang Hua","doi":"10.1016/j.cam.2024.116152","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the almost sure exponential stability and stochastic stabilization problems of discrete-time stochastic systems (DTSSs) with impulsive effects, where the average impulsive interval is taken into account. By using the average impulsive interval approach and the strong law of large numbers, we not only establish the criteria for almost sure exponential stability of general nonlinear discrete-time impulsive stochastic systems (DTISSs) but also design an exact method of a stochastic perturbation to stabilize a given unstable impulsive discrete-time systems. Adopting the average impulsive interval approach and the strong law of large numbers, we established a criterion for almost sure exponential stability of general nonlinear DTISSs. Furthermore, a method of stochastic perturbation has been developed to stabilize an unstable impulsive discrete-time system. Finally, two simulation examples demonstrate the effectiveness of the derived results.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost sure exponential stability and stochastic stabilization of discrete-time stochastic systems with impulses\",\"authors\":\"Ting Cai ,&nbsp;Pei Cheng ,&nbsp;Xing Liu ,&nbsp;Mingang Hua\",\"doi\":\"10.1016/j.cam.2024.116152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper considers the almost sure exponential stability and stochastic stabilization problems of discrete-time stochastic systems (DTSSs) with impulsive effects, where the average impulsive interval is taken into account. By using the average impulsive interval approach and the strong law of large numbers, we not only establish the criteria for almost sure exponential stability of general nonlinear discrete-time impulsive stochastic systems (DTISSs) but also design an exact method of a stochastic perturbation to stabilize a given unstable impulsive discrete-time systems. Adopting the average impulsive interval approach and the strong law of large numbers, we established a criterion for almost sure exponential stability of general nonlinear DTISSs. Furthermore, a method of stochastic perturbation has been developed to stabilize an unstable impulsive discrete-time system. Finally, two simulation examples demonstrate the effectiveness of the derived results.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724004011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有脉冲效应的离散时间随机系统(DTSSs)的几乎确定指数稳定性和随机稳定问题,其中考虑了平均脉冲间隔。利用平均脉冲间隔法和强大数定律,我们不仅建立了一般非线性离散时间脉冲随机系统(DTISSs)的几乎确定指数稳定性准则,而且设计了一种随机扰动的精确方法来稳定给定的不稳定脉冲离散时间系统。采用平均冲动区间法和强大数定律,我们建立了一般非线性 DTISSs 几乎确定的指数稳定性准则。此外,我们还开发了一种随机扰动方法来稳定不稳定的脉冲离散时间系统。最后,两个仿真实例证明了推导结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost sure exponential stability and stochastic stabilization of discrete-time stochastic systems with impulses

This paper considers the almost sure exponential stability and stochastic stabilization problems of discrete-time stochastic systems (DTSSs) with impulsive effects, where the average impulsive interval is taken into account. By using the average impulsive interval approach and the strong law of large numbers, we not only establish the criteria for almost sure exponential stability of general nonlinear discrete-time impulsive stochastic systems (DTISSs) but also design an exact method of a stochastic perturbation to stabilize a given unstable impulsive discrete-time systems. Adopting the average impulsive interval approach and the strong law of large numbers, we established a criterion for almost sure exponential stability of general nonlinear DTISSs. Furthermore, a method of stochastic perturbation has been developed to stabilize an unstable impulsive discrete-time system. Finally, two simulation examples demonstrate the effectiveness of the derived results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信