固体生物燃料燃烧过程中的二氧化碳排放综述--形成机理及与燃料相关的减排措施

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS
{"title":"固体生物燃料燃烧过程中的二氧化碳排放综述--形成机理及与燃料相关的减排措施","authors":"","doi":"10.1016/j.joei.2024.101762","DOIUrl":null,"url":null,"abstract":"<div><p>Minimizing carbon monoxide (CO) emissions from the combustion of solid biofuels is essential to improve thermo-chemical conversion efficiencies and avoid impact on human health. This review focuses on the formation mechanisms and subsequent oxidation of CO within the combustion process; for this, the different phases of biomass combustion (i.e., heating up, pyrolysis, gasification, and homogeneous gas-phase oxidation) are considered separately. The comprehensive analysis shows that CO emissions can be mitigated by fuel-related measures (e.g., washing and leaching to eliminate K components) as well as by (mineral) additivation of the fuel to repress the K-release by binding it in temperature-stable components within the ash. Furthermore, the addition of sulfur results in the sulfation of critical K-compounds to less corrosive and non-radical interfering compounds.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S174396712400240X/pdfft?md5=61a25daf169aaa624111ce2c080c64aa&pid=1-s2.0-S174396712400240X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A review of CO emissions during solid biofuel combustion – Formation mechanisms and fuel-related reduction measures\",\"authors\":\"\",\"doi\":\"10.1016/j.joei.2024.101762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Minimizing carbon monoxide (CO) emissions from the combustion of solid biofuels is essential to improve thermo-chemical conversion efficiencies and avoid impact on human health. This review focuses on the formation mechanisms and subsequent oxidation of CO within the combustion process; for this, the different phases of biomass combustion (i.e., heating up, pyrolysis, gasification, and homogeneous gas-phase oxidation) are considered separately. The comprehensive analysis shows that CO emissions can be mitigated by fuel-related measures (e.g., washing and leaching to eliminate K components) as well as by (mineral) additivation of the fuel to repress the K-release by binding it in temperature-stable components within the ash. Furthermore, the addition of sulfur results in the sulfation of critical K-compounds to less corrosive and non-radical interfering compounds.</p></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S174396712400240X/pdfft?md5=61a25daf169aaa624111ce2c080c64aa&pid=1-s2.0-S174396712400240X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S174396712400240X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S174396712400240X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

尽量减少固体生物燃料燃烧过程中的一氧化碳(CO)排放,对于提高热化学转化效率和避免对人类健康造成影响至关重要。本综述侧重于 CO 在燃烧过程中的形成机制和后续氧化过程;为此,分别考虑了生物质燃烧的不同阶段(即加热、热解、气化和均相气相氧化)。综合分析表明,可通过与燃料相关的措施(如洗涤和浸出以消除钾成分)以及燃料的(矿物)添加剂来减少二氧化碳的排放,这些措施可将钾结合到灰烬中温度稳定的成分中,从而抑制钾的释放。此外,硫的添加会使关键的钾化合物硫化为腐蚀性较低且无放射性干扰的化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of CO emissions during solid biofuel combustion – Formation mechanisms and fuel-related reduction measures

Minimizing carbon monoxide (CO) emissions from the combustion of solid biofuels is essential to improve thermo-chemical conversion efficiencies and avoid impact on human health. This review focuses on the formation mechanisms and subsequent oxidation of CO within the combustion process; for this, the different phases of biomass combustion (i.e., heating up, pyrolysis, gasification, and homogeneous gas-phase oxidation) are considered separately. The comprehensive analysis shows that CO emissions can be mitigated by fuel-related measures (e.g., washing and leaching to eliminate K components) as well as by (mineral) additivation of the fuel to repress the K-release by binding it in temperature-stable components within the ash. Furthermore, the addition of sulfur results in the sulfation of critical K-compounds to less corrosive and non-radical interfering compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信