Chao Zhang, Zhi Liu, Ying Liu, Xingjia Xiong, Tao Liao, Nanhai Ye
{"title":"增强型多轴低循环疲劳寿命模型","authors":"Chao Zhang, Zhi Liu, Ying Liu, Xingjia Xiong, Tao Liao, Nanhai Ye","doi":"10.1016/j.mechrescom.2024.104309","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the accuracy of predicting multiaxial fatigue life, an enhanced multiaxial low-cycle fatigue life model is proposed based on the FS model. This model introduces a correction parameter for the stress-related term to consider the influence of normal stress and shear stress on the critical plane. The feasibility of the model is investigated, and it is validated using fatigue test data from eight different materials. The results indicate that the proposed model is applicable for both symmetric and asymmetric loading conditions under constant amplitude loading, with highly accurate fatigue life prediction results.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enhanced multiaxial low-cycle fatigue life model\",\"authors\":\"Chao Zhang, Zhi Liu, Ying Liu, Xingjia Xiong, Tao Liao, Nanhai Ye\",\"doi\":\"10.1016/j.mechrescom.2024.104309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To improve the accuracy of predicting multiaxial fatigue life, an enhanced multiaxial low-cycle fatigue life model is proposed based on the FS model. This model introduces a correction parameter for the stress-related term to consider the influence of normal stress and shear stress on the critical plane. The feasibility of the model is investigated, and it is validated using fatigue test data from eight different materials. The results indicate that the proposed model is applicable for both symmetric and asymmetric loading conditions under constant amplitude loading, with highly accurate fatigue life prediction results.</p></div>\",\"PeriodicalId\":49846,\"journal\":{\"name\":\"Mechanics Research Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics Research Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093641324000697\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093641324000697","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
An enhanced multiaxial low-cycle fatigue life model
To improve the accuracy of predicting multiaxial fatigue life, an enhanced multiaxial low-cycle fatigue life model is proposed based on the FS model. This model introduces a correction parameter for the stress-related term to consider the influence of normal stress and shear stress on the critical plane. The feasibility of the model is investigated, and it is validated using fatigue test data from eight different materials. The results indicate that the proposed model is applicable for both symmetric and asymmetric loading conditions under constant amplitude loading, with highly accurate fatigue life prediction results.
期刊介绍:
Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide:
• a fast means of communication
• an exchange of ideas among workers in mechanics
• an effective method of bringing new results quickly to the public
• an informal vehicle for the discussion
• of ideas that may still be in the formative stages
The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.