模糊环境中具有 w 个风险源的几何分形布朗运动下带有交易成本的几何亚洲电力期权定价

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Abdulaziz Alsenafi , Fares Alazemi , Alireza Najafi
{"title":"模糊环境中具有 w 个风险源的几何分形布朗运动下带有交易成本的几何亚洲电力期权定价","authors":"Abdulaziz Alsenafi ,&nbsp;Fares Alazemi ,&nbsp;Alireza Najafi","doi":"10.1016/j.cam.2024.116165","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we obtain an explicit formula to calculate the geometric Asian power option price with floating strike price and transaction cost under the fractional geometric Brownian motion model with w sources of risk and fuzzy parameters. First, by considering the Leland and Kabanov theorems, we derive a non-linear PDE with the transaction cost formula to obtain the option price. Then, using the Green function find a closed form solution for the PDE and achieve the price of the option under different amounts of the model and option parameters. Next, we consider the model’s parameters as fuzzy numbers and acquire a general formula to obtain intervals for the option price under different belief degrees and power option parameter amounts.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Asian power option pricing with transaction cost under the geometric fractional Brownian motion with w sources of risk in fuzzy environment\",\"authors\":\"Abdulaziz Alsenafi ,&nbsp;Fares Alazemi ,&nbsp;Alireza Najafi\",\"doi\":\"10.1016/j.cam.2024.116165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we obtain an explicit formula to calculate the geometric Asian power option price with floating strike price and transaction cost under the fractional geometric Brownian motion model with w sources of risk and fuzzy parameters. First, by considering the Leland and Kabanov theorems, we derive a non-linear PDE with the transaction cost formula to obtain the option price. Then, using the Green function find a closed form solution for the PDE and achieve the price of the option under different amounts of the model and option parameters. Next, we consider the model’s parameters as fuzzy numbers and acquire a general formula to obtain intervals for the option price under different belief degrees and power option parameter amounts.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037704272400414X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037704272400414X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文在具有 w 个风险源和模糊参数的分数几何布朗运动模型下,得到了计算具有浮动执行价格和交易成本的几何亚洲力量期权价格的明确公式。首先,通过考虑利兰定理和卡巴诺夫定理,我们推导出一个非线性 PDE 与交易成本公式,从而得到期权价格。然后,利用格林函数求出 PDE 的闭式解,并求得不同模型和期权参数量下的期权价格。接下来,我们将模型参数视为模糊数,并通过一般公式得到不同信念度和幂期权参数量下的期权价格区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Asian power option pricing with transaction cost under the geometric fractional Brownian motion with w sources of risk in fuzzy environment

In this paper, we obtain an explicit formula to calculate the geometric Asian power option price with floating strike price and transaction cost under the fractional geometric Brownian motion model with w sources of risk and fuzzy parameters. First, by considering the Leland and Kabanov theorems, we derive a non-linear PDE with the transaction cost formula to obtain the option price. Then, using the Green function find a closed form solution for the PDE and achieve the price of the option under different amounts of the model and option parameters. Next, we consider the model’s parameters as fuzzy numbers and acquire a general formula to obtain intervals for the option price under different belief degrees and power option parameter amounts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信