{"title":"利用超声波辅助萃取技术对茶桔叶提取物粉末进行表征,并将其应用于明胶基薄膜作为可生物降解的活性薄膜","authors":"Pudthaya Kumnerdsiri , Sasina Sanprasert , Jantana Praiboon , Anusorn Seubsai , Wanchat Sirisarn , Jaksuma Pongsetkul , Nathdanai Harnkarnsujarit , Saroat Rawdkuen , Supatra Karnjanapratum , Samart Sai-Ut , Passakorn Kingwascharapong","doi":"10.1016/j.fufo.2024.100419","DOIUrl":null,"url":null,"abstract":"<div><p>Poor management of plastic waste leads to environmental pollution, a problem that has been tackled by introducing biodegradable plastic containing bioactive compounds, as an alternative to traditional plastics. This research investigated the effects of different solvents (water or ethanol) and ultrasonic extraction conditions (ultrasonic power: 30 %, 60 %, or 90 %; extraction times: 15 or 30 min) on the physical and functional properties of dechlorophylled Cha-Kram leaf extract powder (DCKLEP). The highest antioxidant activities were extracted using 60 % ultrasonic power and 30 min of extraction time (60 % DCKLEP-alc 30 min). In addition, the effects of different concentrations of 60 % DCKLEP-alc 30 min (0, 0.375, 0.75, 1.5, or 3 %) on the attributes of gelatin films were evaluated. The results indicated that increasing the 60 % DCKLEP-alc 30 min concentration significantly (<em>p</em> <em><</em> 0.05) enhanced the thickness, mechanical and thermal properties, light barrier properties, and antioxidant activities of the film. The structure of the film was modified due to the interactions between gelatin and 60 % DCKLEP-alc 30 min, as confirmed using FTIR analysis. The antioxidant activities and UV–visible light barrier property were improved by increasing the 60 % DCKLEP-alc 30 min concentration in the film. Thus, gelatin film containing 60 % DCKLEP-alc 30 min could potentially serve as an environmental-friendly, active film.</p></div>","PeriodicalId":34474,"journal":{"name":"Future Foods","volume":"10 ","pages":"Article 100419"},"PeriodicalIF":7.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666833524001254/pdfft?md5=ed7e19701d0228f8293b37993de1f59d&pid=1-s2.0-S2666833524001254-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterization of Cha-Kram leaf extract powder using ultrasound-assisted extraction and its application in gelatin-based film as biodegradable active film\",\"authors\":\"Pudthaya Kumnerdsiri , Sasina Sanprasert , Jantana Praiboon , Anusorn Seubsai , Wanchat Sirisarn , Jaksuma Pongsetkul , Nathdanai Harnkarnsujarit , Saroat Rawdkuen , Supatra Karnjanapratum , Samart Sai-Ut , Passakorn Kingwascharapong\",\"doi\":\"10.1016/j.fufo.2024.100419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Poor management of plastic waste leads to environmental pollution, a problem that has been tackled by introducing biodegradable plastic containing bioactive compounds, as an alternative to traditional plastics. This research investigated the effects of different solvents (water or ethanol) and ultrasonic extraction conditions (ultrasonic power: 30 %, 60 %, or 90 %; extraction times: 15 or 30 min) on the physical and functional properties of dechlorophylled Cha-Kram leaf extract powder (DCKLEP). The highest antioxidant activities were extracted using 60 % ultrasonic power and 30 min of extraction time (60 % DCKLEP-alc 30 min). In addition, the effects of different concentrations of 60 % DCKLEP-alc 30 min (0, 0.375, 0.75, 1.5, or 3 %) on the attributes of gelatin films were evaluated. The results indicated that increasing the 60 % DCKLEP-alc 30 min concentration significantly (<em>p</em> <em><</em> 0.05) enhanced the thickness, mechanical and thermal properties, light barrier properties, and antioxidant activities of the film. The structure of the film was modified due to the interactions between gelatin and 60 % DCKLEP-alc 30 min, as confirmed using FTIR analysis. The antioxidant activities and UV–visible light barrier property were improved by increasing the 60 % DCKLEP-alc 30 min concentration in the film. Thus, gelatin film containing 60 % DCKLEP-alc 30 min could potentially serve as an environmental-friendly, active film.</p></div>\",\"PeriodicalId\":34474,\"journal\":{\"name\":\"Future Foods\",\"volume\":\"10 \",\"pages\":\"Article 100419\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666833524001254/pdfft?md5=ed7e19701d0228f8293b37993de1f59d&pid=1-s2.0-S2666833524001254-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Foods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666833524001254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666833524001254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Characterization of Cha-Kram leaf extract powder using ultrasound-assisted extraction and its application in gelatin-based film as biodegradable active film
Poor management of plastic waste leads to environmental pollution, a problem that has been tackled by introducing biodegradable plastic containing bioactive compounds, as an alternative to traditional plastics. This research investigated the effects of different solvents (water or ethanol) and ultrasonic extraction conditions (ultrasonic power: 30 %, 60 %, or 90 %; extraction times: 15 or 30 min) on the physical and functional properties of dechlorophylled Cha-Kram leaf extract powder (DCKLEP). The highest antioxidant activities were extracted using 60 % ultrasonic power and 30 min of extraction time (60 % DCKLEP-alc 30 min). In addition, the effects of different concentrations of 60 % DCKLEP-alc 30 min (0, 0.375, 0.75, 1.5, or 3 %) on the attributes of gelatin films were evaluated. The results indicated that increasing the 60 % DCKLEP-alc 30 min concentration significantly (p< 0.05) enhanced the thickness, mechanical and thermal properties, light barrier properties, and antioxidant activities of the film. The structure of the film was modified due to the interactions between gelatin and 60 % DCKLEP-alc 30 min, as confirmed using FTIR analysis. The antioxidant activities and UV–visible light barrier property were improved by increasing the 60 % DCKLEP-alc 30 min concentration in the film. Thus, gelatin film containing 60 % DCKLEP-alc 30 min could potentially serve as an environmental-friendly, active film.
Future FoodsAgricultural and Biological Sciences-Food Science
CiteScore
8.60
自引率
0.00%
发文量
97
审稿时长
15 weeks
期刊介绍:
Future Foods is a specialized journal that is dedicated to tackling the challenges posed by climate change and the need for sustainability in the realm of food production. The journal recognizes the imperative to transform current food manufacturing and consumption practices to meet the dietary needs of a burgeoning global population while simultaneously curbing environmental degradation.
The mission of Future Foods is to disseminate research that aligns with the goal of fostering the development of innovative technologies and alternative food sources to establish more sustainable food systems. The journal is committed to publishing high-quality, peer-reviewed articles that contribute to the advancement of sustainable food practices.
Abstracting and indexing:
Scopus
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (ESCI)
SCImago Journal Rank (SJR)
SNIP