Anna-Liis Remmel , Sander Ratso , Kerli Liivand , Mati Danilson , Kätlin Kaare , Valdek Mikli , Ivar Kruusenberg
{"title":"通过低温熔盐电解将二氧化碳转化为用于氧还原反应的高活性催化剂","authors":"Anna-Liis Remmel , Sander Ratso , Kerli Liivand , Mati Danilson , Kätlin Kaare , Valdek Mikli , Ivar Kruusenberg","doi":"10.1016/j.elecom.2024.107781","DOIUrl":null,"url":null,"abstract":"<div><p>The implementation of a technology capable of capturing and converting CO<sub>2</sub> into valuable products is one of the key requirements for limiting the effects of our carbon-intensive industries. At the same time, future CO<sub>2</sub> emissions need to be reduced to combat climate change, meaning that new devices capable of storing and converting energy without CO<sub>2</sub> emissions have to be adopted widely. In this work, we demonstrate catalysts made directly from CO<sub>2</sub> for fuel cells and zinc-air batteries. The molten salt electrolysis process is used to electrodeposit solid carbon from CO<sub>2</sub> in two mixtures, a known eutectic mixture of Li<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub> and a new mixture containing 0.1 mol of LiOH in addition. The effects of the electrolyte towards the final carbon product and its electrocatalytic activity are analysed using the rotating disk electrode method, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The porosity of the materials is described by N<sub>2</sub> adsorption and the best performing catalyst is compared to the activity of a commercial 20 wt% PtRu/C material in a zinc-air battery.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107781"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001243/pdfft?md5=2bd4bc43b3c3d3126635e6316a69716e&pid=1-s2.0-S1388248124001243-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CO2 transformed into highly active catalysts for the oxygen reduction reaction via low-temperature molten salt electrolysis\",\"authors\":\"Anna-Liis Remmel , Sander Ratso , Kerli Liivand , Mati Danilson , Kätlin Kaare , Valdek Mikli , Ivar Kruusenberg\",\"doi\":\"10.1016/j.elecom.2024.107781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The implementation of a technology capable of capturing and converting CO<sub>2</sub> into valuable products is one of the key requirements for limiting the effects of our carbon-intensive industries. At the same time, future CO<sub>2</sub> emissions need to be reduced to combat climate change, meaning that new devices capable of storing and converting energy without CO<sub>2</sub> emissions have to be adopted widely. In this work, we demonstrate catalysts made directly from CO<sub>2</sub> for fuel cells and zinc-air batteries. The molten salt electrolysis process is used to electrodeposit solid carbon from CO<sub>2</sub> in two mixtures, a known eutectic mixture of Li<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub> and a new mixture containing 0.1 mol of LiOH in addition. The effects of the electrolyte towards the final carbon product and its electrocatalytic activity are analysed using the rotating disk electrode method, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The porosity of the materials is described by N<sub>2</sub> adsorption and the best performing catalyst is compared to the activity of a commercial 20 wt% PtRu/C material in a zinc-air battery.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"166 \",\"pages\":\"Article 107781\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388248124001243/pdfft?md5=2bd4bc43b3c3d3126635e6316a69716e&pid=1-s2.0-S1388248124001243-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124001243\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001243","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
CO2 transformed into highly active catalysts for the oxygen reduction reaction via low-temperature molten salt electrolysis
The implementation of a technology capable of capturing and converting CO2 into valuable products is one of the key requirements for limiting the effects of our carbon-intensive industries. At the same time, future CO2 emissions need to be reduced to combat climate change, meaning that new devices capable of storing and converting energy without CO2 emissions have to be adopted widely. In this work, we demonstrate catalysts made directly from CO2 for fuel cells and zinc-air batteries. The molten salt electrolysis process is used to electrodeposit solid carbon from CO2 in two mixtures, a known eutectic mixture of Li2CO3, Na2CO3, K2CO3 and a new mixture containing 0.1 mol of LiOH in addition. The effects of the electrolyte towards the final carbon product and its electrocatalytic activity are analysed using the rotating disk electrode method, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The porosity of the materials is described by N2 adsorption and the best performing catalyst is compared to the activity of a commercial 20 wt% PtRu/C material in a zinc-air battery.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.