Kwang-Woo Kim, Jae-Hyeon Park, Tae-Yong Park, Hyun-Ung Oh
{"title":"基于应变的印刷电路板方法在采用垂直安装印刷电路板的空载电子设备中的有效性实验评估","authors":"Kwang-Woo Kim, Jae-Hyeon Park, Tae-Yong Park, Hyun-Ung Oh","doi":"10.3390/aerospace11070562","DOIUrl":null,"url":null,"abstract":"The Oh-Park methodology was proposed to overcome the limitations of Steinberg’s theory for evaluating the structural safety of space-borne electronics and has been experimentally verified at the printed circuit board (PCB) specimen level for various types of electronic packages, such as ball grid arrays (BGAs), column grid arrays (CGAs), and small-outline packages (SOPs). However, it is necessary to validate the design methodology because the PCB mounted on the housing is affected by the elastic mode of the mechanical housing. In addition, although the validity of the existing theory based on critical strain has been verified for horizontally mounted structures, there are cases where PCBs are mounted vertically. Therefore, it is essential to consider the dynamic influence of the boundary conditions of mounted electronics. In this study, electronics specimens with corresponding boundary conditions were fabricated, and a fatigue-life test was performed. In addition, a structural analysis using Steinberg’s theory and the Oh-Park methodology was performed, and the results were compared with those of the fatigue-life test. The results showed that the analysis using the Oh-Park methodology accurately represented the test results, and the validity of the Oh-Park methodology for vertical electronics was verified experimentally.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"11 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Evaluation of the Effectiveness of the Printed Circuit Board Strain-Based Methodology in Space-Borne Electronics with Vertically Mounted Printed Circuit Boards\",\"authors\":\"Kwang-Woo Kim, Jae-Hyeon Park, Tae-Yong Park, Hyun-Ung Oh\",\"doi\":\"10.3390/aerospace11070562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Oh-Park methodology was proposed to overcome the limitations of Steinberg’s theory for evaluating the structural safety of space-borne electronics and has been experimentally verified at the printed circuit board (PCB) specimen level for various types of electronic packages, such as ball grid arrays (BGAs), column grid arrays (CGAs), and small-outline packages (SOPs). However, it is necessary to validate the design methodology because the PCB mounted on the housing is affected by the elastic mode of the mechanical housing. In addition, although the validity of the existing theory based on critical strain has been verified for horizontally mounted structures, there are cases where PCBs are mounted vertically. Therefore, it is essential to consider the dynamic influence of the boundary conditions of mounted electronics. In this study, electronics specimens with corresponding boundary conditions were fabricated, and a fatigue-life test was performed. In addition, a structural analysis using Steinberg’s theory and the Oh-Park methodology was performed, and the results were compared with those of the fatigue-life test. The results showed that the analysis using the Oh-Park methodology accurately represented the test results, and the validity of the Oh-Park methodology for vertical electronics was verified experimentally.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11070562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11070562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Experimental Evaluation of the Effectiveness of the Printed Circuit Board Strain-Based Methodology in Space-Borne Electronics with Vertically Mounted Printed Circuit Boards
The Oh-Park methodology was proposed to overcome the limitations of Steinberg’s theory for evaluating the structural safety of space-borne electronics and has been experimentally verified at the printed circuit board (PCB) specimen level for various types of electronic packages, such as ball grid arrays (BGAs), column grid arrays (CGAs), and small-outline packages (SOPs). However, it is necessary to validate the design methodology because the PCB mounted on the housing is affected by the elastic mode of the mechanical housing. In addition, although the validity of the existing theory based on critical strain has been verified for horizontally mounted structures, there are cases where PCBs are mounted vertically. Therefore, it is essential to consider the dynamic influence of the boundary conditions of mounted electronics. In this study, electronics specimens with corresponding boundary conditions were fabricated, and a fatigue-life test was performed. In addition, a structural analysis using Steinberg’s theory and the Oh-Park methodology was performed, and the results were compared with those of the fatigue-life test. The results showed that the analysis using the Oh-Park methodology accurately represented the test results, and the validity of the Oh-Park methodology for vertical electronics was verified experimentally.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.