提高荧光显微镜图像分辨率的广义深度神经网络方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zichen Jin, Qing He, Yang Liu, Kaige Wang
{"title":"提高荧光显微镜图像分辨率的广义深度神经网络方法","authors":"Zichen Jin, Qing He, Yang Liu, Kaige Wang","doi":"10.1142/s1793545824500111","DOIUrl":null,"url":null,"abstract":"Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed, imaging resolution, and imaging flux. This paper proposes a deep neural network based on a generative adversarial network (GAN). The generator employs a U-Net-based network, which integrates DenseNet for the downsampling component. The proposed method has excellent properties, for example, the network model is trained with several different datasets of biological structures; the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging; and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets. In addition, experimental results showed that the method improved the resolution of caveolin-coated pits (CCPs) structures from 264[Formula: see text]nm to 138[Formula: see text]nm, a 1.91-fold increase, and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized deep neural network approach for improving resolution of fluorescence microscopy images\",\"authors\":\"Zichen Jin, Qing He, Yang Liu, Kaige Wang\",\"doi\":\"10.1142/s1793545824500111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed, imaging resolution, and imaging flux. This paper proposes a deep neural network based on a generative adversarial network (GAN). The generator employs a U-Net-based network, which integrates DenseNet for the downsampling component. The proposed method has excellent properties, for example, the network model is trained with several different datasets of biological structures; the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging; and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets. In addition, experimental results showed that the method improved the resolution of caveolin-coated pits (CCPs) structures from 264[Formula: see text]nm to 138[Formula: see text]nm, a 1.91-fold increase, and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793545824500111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/s1793545824500111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

深度学习能够在成像与重建速度、成像分辨率和成像通量等方面极大地推动超分辨率成像技术的进步。本文提出了一种基于生成对抗网络(GAN)的深度神经网络。生成器采用了基于 U-Net 的网络,并集成了 DenseNet 作为下采样组件。所提出的方法具有优良的特性,例如,该网络模型是用多个不同的生物结构数据集训练出来的;训练出来的模型可以提高不同显微成像模式(如共焦成像和宽视场成像)的成像分辨率;该模型展示了一种泛化能力,即使在数据集之外,也能提高不同生物结构的分辨率。此外,实验结果表明,该方法将洞穴素包覆坑(CCPs)结构的分辨率从264[式:见正文]nm提高到138[式:见正文]nm,提高了1.91倍,并将DNA分子在微流体通道中传输时的成像分辨率提高了近一倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized deep neural network approach for improving resolution of fluorescence microscopy images
Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed, imaging resolution, and imaging flux. This paper proposes a deep neural network based on a generative adversarial network (GAN). The generator employs a U-Net-based network, which integrates DenseNet for the downsampling component. The proposed method has excellent properties, for example, the network model is trained with several different datasets of biological structures; the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging; and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets. In addition, experimental results showed that the method improved the resolution of caveolin-coated pits (CCPs) structures from 264[Formula: see text]nm to 138[Formula: see text]nm, a 1.91-fold increase, and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信