M. A. Javed, U. Shehzadi, A. Sowayan, H. M. Atif, M. Nazeer, Sami Ullah, Khan
{"title":"使用非牛顿流体的压延工艺中的滑移和磁流体力学(MHD)数值研究","authors":"M. A. Javed, U. Shehzadi, A. Sowayan, H. M. Atif, M. Nazeer, Sami Ullah, Khan","doi":"10.24200/sci.2024.62522.7888","DOIUrl":null,"url":null,"abstract":"In this study, calendering process of an Oldroyd 4-constant model with the non-linear slip condition is presented. The fundamental laws are used to formulate the flow equations and then are simplified under lubrication approximation theory. We introduced the stream function to eradicate the pressure gradient and then numerically solved the final equations using the \"bvp4c method\" to determine the stream function and velocity profiles. The pressure gradient, pressure, and mechanical quantities of calendering operations are computed using the Runge-Kutta 4 th -order approach. Using a variety of graphs, it is discussed how the slip, Hartmann number, and material parameters of an Oldroyd 4-constant fluid affect the velocity, pressure gradient, and other associated characteristics of calendering. The results reveal that on comparing to the no-slip situation, the pressure distribution inside the calender and the length of contact decreases with increasing slip parameter values. On the other hand, the Hartmann number is responsible to enhance pressure. Furthermore, a reduction is observed in final sheet thickness with increases the values of the slip parameter ( Kn ). The force and power are the decreasing function of 1 , conversely, these quantities increase with enhancing the values of leave off distance ( ).","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of slip and Magnetohydrodynamics (MHD) in calendering process using non-Newtonian fluid\",\"authors\":\"M. A. Javed, U. Shehzadi, A. Sowayan, H. M. Atif, M. Nazeer, Sami Ullah, Khan\",\"doi\":\"10.24200/sci.2024.62522.7888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, calendering process of an Oldroyd 4-constant model with the non-linear slip condition is presented. The fundamental laws are used to formulate the flow equations and then are simplified under lubrication approximation theory. We introduced the stream function to eradicate the pressure gradient and then numerically solved the final equations using the \\\"bvp4c method\\\" to determine the stream function and velocity profiles. The pressure gradient, pressure, and mechanical quantities of calendering operations are computed using the Runge-Kutta 4 th -order approach. Using a variety of graphs, it is discussed how the slip, Hartmann number, and material parameters of an Oldroyd 4-constant fluid affect the velocity, pressure gradient, and other associated characteristics of calendering. The results reveal that on comparing to the no-slip situation, the pressure distribution inside the calender and the length of contact decreases with increasing slip parameter values. On the other hand, the Hartmann number is responsible to enhance pressure. Furthermore, a reduction is observed in final sheet thickness with increases the values of the slip parameter ( Kn ). The force and power are the decreasing function of 1 , conversely, these quantities increase with enhancing the values of leave off distance ( ).\",\"PeriodicalId\":21605,\"journal\":{\"name\":\"Scientia Iranica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Iranica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24200/sci.2024.62522.7888\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24200/sci.2024.62522.7888","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical study of slip and Magnetohydrodynamics (MHD) in calendering process using non-Newtonian fluid
In this study, calendering process of an Oldroyd 4-constant model with the non-linear slip condition is presented. The fundamental laws are used to formulate the flow equations and then are simplified under lubrication approximation theory. We introduced the stream function to eradicate the pressure gradient and then numerically solved the final equations using the "bvp4c method" to determine the stream function and velocity profiles. The pressure gradient, pressure, and mechanical quantities of calendering operations are computed using the Runge-Kutta 4 th -order approach. Using a variety of graphs, it is discussed how the slip, Hartmann number, and material parameters of an Oldroyd 4-constant fluid affect the velocity, pressure gradient, and other associated characteristics of calendering. The results reveal that on comparing to the no-slip situation, the pressure distribution inside the calender and the length of contact decreases with increasing slip parameter values. On the other hand, the Hartmann number is responsible to enhance pressure. Furthermore, a reduction is observed in final sheet thickness with increases the values of the slip parameter ( Kn ). The force and power are the decreasing function of 1 , conversely, these quantities increase with enhancing the values of leave off distance ( ).
期刊介绍:
The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas.
The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.