J. K. Manoj, U. Arunachalam, M. Mathanbabu, A. Kajavali
{"title":"电沉积镍氧化锆涂层的机械性能和传热性能","authors":"J. K. Manoj, U. Arunachalam, M. Mathanbabu, A. Kajavali","doi":"10.4314/bcse.v38i5.19","DOIUrl":null,"url":null,"abstract":"Thermal barrier coatings (TBCs) are often applied to base metals exposed to excessive temperatures to protect them from the harsh operating thermal cycle load conditions and to enhance their functionality. For this research, nickel and zirconia was coated over a mild steel substrate by electro-deposition or co-deposition method. While selecting appropriate electro-deposition parameters, this study analyses the convection and conduction heat transfer characteristics and mechanical behaviours of a nickel-zirconia co-deposit over a mild steel substrate. The better-quality deposition is formed with thicknesses of 10 μm and 50 μm. The microstructure and morphological analyses were conducted using scanning electron microscope (SEM). The phase analysis was conducted using X-ray diffraction analysis (XRD). The porosity, hardness and wear behaviours were measured as per the American Society for Testing and Materials (ASTM). The results showed that nickel-zirconia coating has better performance. The coating's convection and conduction heat transfer potential are investigated using a specially designed and constructed experimentation apparatus. Compared to an uncoated panel, heat transfer studies on nickel-zirconia coatings demonstrate that nano-coatings with a particle size of about 92 nm show a significant temperature drop with varied coating thicknesses and heat inputs for different heat inputs. \nKEY WORDS: Thermal barrier coatings, Electro deposition, Conduction heat transfer, Convection heat transfer, Nickel-Zirconia \nBull. Chem. Soc. Ethiop. 2024, 38(5), 1439-1452. \nDOI: https://dx.doi.org/10.4314/bcse.v38i5.19 ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical and heat transfer behaviour of electro-deposited nickel-zirconia coating\",\"authors\":\"J. K. Manoj, U. Arunachalam, M. Mathanbabu, A. Kajavali\",\"doi\":\"10.4314/bcse.v38i5.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal barrier coatings (TBCs) are often applied to base metals exposed to excessive temperatures to protect them from the harsh operating thermal cycle load conditions and to enhance their functionality. For this research, nickel and zirconia was coated over a mild steel substrate by electro-deposition or co-deposition method. While selecting appropriate electro-deposition parameters, this study analyses the convection and conduction heat transfer characteristics and mechanical behaviours of a nickel-zirconia co-deposit over a mild steel substrate. The better-quality deposition is formed with thicknesses of 10 μm and 50 μm. The microstructure and morphological analyses were conducted using scanning electron microscope (SEM). The phase analysis was conducted using X-ray diffraction analysis (XRD). The porosity, hardness and wear behaviours were measured as per the American Society for Testing and Materials (ASTM). The results showed that nickel-zirconia coating has better performance. The coating's convection and conduction heat transfer potential are investigated using a specially designed and constructed experimentation apparatus. Compared to an uncoated panel, heat transfer studies on nickel-zirconia coatings demonstrate that nano-coatings with a particle size of about 92 nm show a significant temperature drop with varied coating thicknesses and heat inputs for different heat inputs. \\nKEY WORDS: Thermal barrier coatings, Electro deposition, Conduction heat transfer, Convection heat transfer, Nickel-Zirconia \\nBull. Chem. Soc. Ethiop. 2024, 38(5), 1439-1452. \\nDOI: https://dx.doi.org/10.4314/bcse.v38i5.19 \",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.4314/bcse.v38i5.19\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.4314/bcse.v38i5.19","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical and heat transfer behaviour of electro-deposited nickel-zirconia coating
Thermal barrier coatings (TBCs) are often applied to base metals exposed to excessive temperatures to protect them from the harsh operating thermal cycle load conditions and to enhance their functionality. For this research, nickel and zirconia was coated over a mild steel substrate by electro-deposition or co-deposition method. While selecting appropriate electro-deposition parameters, this study analyses the convection and conduction heat transfer characteristics and mechanical behaviours of a nickel-zirconia co-deposit over a mild steel substrate. The better-quality deposition is formed with thicknesses of 10 μm and 50 μm. The microstructure and morphological analyses were conducted using scanning electron microscope (SEM). The phase analysis was conducted using X-ray diffraction analysis (XRD). The porosity, hardness and wear behaviours were measured as per the American Society for Testing and Materials (ASTM). The results showed that nickel-zirconia coating has better performance. The coating's convection and conduction heat transfer potential are investigated using a specially designed and constructed experimentation apparatus. Compared to an uncoated panel, heat transfer studies on nickel-zirconia coatings demonstrate that nano-coatings with a particle size of about 92 nm show a significant temperature drop with varied coating thicknesses and heat inputs for different heat inputs.
KEY WORDS: Thermal barrier coatings, Electro deposition, Conduction heat transfer, Convection heat transfer, Nickel-Zirconia
Bull. Chem. Soc. Ethiop. 2024, 38(5), 1439-1452.
DOI: https://dx.doi.org/10.4314/bcse.v38i5.19
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.