Tanu Arora, Km. Garima, Vikas Kumar, Saleem Javed, Mohammad Azam, Saud I. Al-Resayes, Nivedita Agnihotri
{"title":"4H-1-苯并吡喃衍生钯(II)配合物的分光光度法、量子化学和分子对接研究","authors":"Tanu Arora, Km. Garima, Vikas Kumar, Saleem Javed, Mohammad Azam, Saud I. Al-Resayes, Nivedita Agnihotri","doi":"10.4314/bcse.v38i5.10","DOIUrl":null,"url":null,"abstract":"Transition metal complexes are an appealing target in the development of functional materials used frequently in industrial and therapeutic world. The quantum chemical investigations help to obtain a thorough comprehension of the interplay between complexes and biological materials. It necessitates sufficient modeling of chemical phenomena in the system, occasionally involving assistance of classical or semi-empirical computational techniques. Identification of the factors influencing complexes and their optimization is essential for electronic structure calculations and the relevant biochemical potential. The present study aims at correlating analytical studies with the theoretical behavior involving identification of structural features and bonding interactions of the three 4H-1-benzopyrans and their spectrophotometrically analyzed palladium complexes using DFT calculations to get acquainted with pharmacological profile of the complexes. FMO studies indicated a higher Egap for ligand in all the cases than their respective Pd(II) complexes. Furthermore, according to the other chemical descriptors, interaction between the ligands and respective complexes, cause chromogenic ligand’s chemical hardness to decrease indicating that the formed complexes have lower kinetic stability and more chemical reactivity. Efficiency of the studied ligands further was analyzed by molecular docking against the target proteins, of which 2O0U, a transferase exhibited mutual interactions with all the examined ligands. \nKEY WORDS: Palladium(II), 4H-1-benzopyran complexes, DFT, MEP, Molecular docking \nBull. Chem. Soc. Ethiop. 2024, 38(5), 1311-1327. \nDOI: https://dx.doi.org/10.4314/bcse.v38i5.10 ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrophotometric, quantum chemical and molecular docking investigations of 4H-1-benzopyran-derived Pd(II) complexes\",\"authors\":\"Tanu Arora, Km. Garima, Vikas Kumar, Saleem Javed, Mohammad Azam, Saud I. Al-Resayes, Nivedita Agnihotri\",\"doi\":\"10.4314/bcse.v38i5.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transition metal complexes are an appealing target in the development of functional materials used frequently in industrial and therapeutic world. The quantum chemical investigations help to obtain a thorough comprehension of the interplay between complexes and biological materials. It necessitates sufficient modeling of chemical phenomena in the system, occasionally involving assistance of classical or semi-empirical computational techniques. Identification of the factors influencing complexes and their optimization is essential for electronic structure calculations and the relevant biochemical potential. The present study aims at correlating analytical studies with the theoretical behavior involving identification of structural features and bonding interactions of the three 4H-1-benzopyrans and their spectrophotometrically analyzed palladium complexes using DFT calculations to get acquainted with pharmacological profile of the complexes. FMO studies indicated a higher Egap for ligand in all the cases than their respective Pd(II) complexes. Furthermore, according to the other chemical descriptors, interaction between the ligands and respective complexes, cause chromogenic ligand’s chemical hardness to decrease indicating that the formed complexes have lower kinetic stability and more chemical reactivity. Efficiency of the studied ligands further was analyzed by molecular docking against the target proteins, of which 2O0U, a transferase exhibited mutual interactions with all the examined ligands. \\nKEY WORDS: Palladium(II), 4H-1-benzopyran complexes, DFT, MEP, Molecular docking \\nBull. Chem. Soc. Ethiop. 2024, 38(5), 1311-1327. \\nDOI: https://dx.doi.org/10.4314/bcse.v38i5.10 \",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.4314/bcse.v38i5.10\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.4314/bcse.v38i5.10","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Spectrophotometric, quantum chemical and molecular docking investigations of 4H-1-benzopyran-derived Pd(II) complexes
Transition metal complexes are an appealing target in the development of functional materials used frequently in industrial and therapeutic world. The quantum chemical investigations help to obtain a thorough comprehension of the interplay between complexes and biological materials. It necessitates sufficient modeling of chemical phenomena in the system, occasionally involving assistance of classical or semi-empirical computational techniques. Identification of the factors influencing complexes and their optimization is essential for electronic structure calculations and the relevant biochemical potential. The present study aims at correlating analytical studies with the theoretical behavior involving identification of structural features and bonding interactions of the three 4H-1-benzopyrans and their spectrophotometrically analyzed palladium complexes using DFT calculations to get acquainted with pharmacological profile of the complexes. FMO studies indicated a higher Egap for ligand in all the cases than their respective Pd(II) complexes. Furthermore, according to the other chemical descriptors, interaction between the ligands and respective complexes, cause chromogenic ligand’s chemical hardness to decrease indicating that the formed complexes have lower kinetic stability and more chemical reactivity. Efficiency of the studied ligands further was analyzed by molecular docking against the target proteins, of which 2O0U, a transferase exhibited mutual interactions with all the examined ligands.
KEY WORDS: Palladium(II), 4H-1-benzopyran complexes, DFT, MEP, Molecular docking
Bull. Chem. Soc. Ethiop. 2024, 38(5), 1311-1327.
DOI: https://dx.doi.org/10.4314/bcse.v38i5.10
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.